Trudy Matematicheskogo Instituta imeni V.A. Steklova General information Latest issue Forthcoming papers Archive Impact factor Guidelines for authors License agreement Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Trudy Mat. Inst. Steklova: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Trudy Mat. Inst. Steklova, 2016, Volume 294, Pages 216–229 (Mi tm3728)  Elliptic function of level $4$

E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: The article is devoted to the theory of elliptic functions of level $n$. An elliptic function of level $n$ determines a Hirzebruch genus called an elliptic genus of level $n$. Elliptic functions of level $n$ are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level $2$ is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form $F(u,v)=(u^2-v^2)/(uB(v)-vB(u))$, $B(0)=1$. The elliptic function of level $3$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2 A(u))/(uA(v)^2-vA(u)^2)$, $A(0)=1$, $A"(0)=0$. In the present study we show that the elliptic function of level $4$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2A(u))/(uB(v)-vB(u))$, where $A(0)=B(0)=1$ and for $B'(0)=A"(0)=0$, $A'(0)=A_1$, and $B"(0)=2B_2$ the following relation holds: $(2B(u)+3A_1u)^2=4A(u)^3-(3A_1^2-8B_2)u^2A(u)^2$. To prove this result, we express the elliptic function of level $4$ in terms of the Weierstrass elliptic functions.

 Funding Agency Grant Number Russian Science Foundation 14-50-00005 This work is supported by the Russian Science Foundation under grant 14-50-00005.

DOI: https://doi.org/10.1134/S0371968516030122  Full text: PDF file (239 kB) References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 294, 201–214 Bibliographic databases:     UDC: 512.741+515.178.2+517.965

Citation: E. Yu. Bunkova, “Elliptic function of level $4$”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, Trudy Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 216–229; Proc. Steklov Inst. Math., 294 (2016), 201–214 Citation in format AMSBIB
\Bibitem{Bun16}
\by E.~Yu.~Bunkova
\paper Elliptic function of level ~$4$
\inbook Modern problems of mathematics, mechanics, and mathematical physics.~II
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 294
\pages 216--229
\publ MAIK Nauka/Interperiodica
\mathnet{http://mi.mathnet.ru/tm3728}
\crossref{https://doi.org/10.1134/S0371968516030122}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3628501}
\elib{https://elibrary.ru/item.asp?id=26601059}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 294
\pages 201--214
\crossref{https://doi.org/10.1134/S0081543816060122}
\elib{https://elibrary.ru/item.asp?id=27583651}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992060994}

• http://mi.mathnet.ru/eng/tm3728
• https://doi.org/10.1134/S0371968516030122
• http://mi.mathnet.ru/eng/tm/v294/p216

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. A. V. Ustinov, “Buchstaber Formal Group and Elliptic Functions of Small Levels”, Math. Notes, 102:1 (2017), 81–91      2. Elena Yu. Bunkova, “Hirzebruch functional equation: classification of solutions”, Proc. Steklov Inst. Math., 302 (2018), 33–47      3. E. Yu. Bunkova, “Universal Formal Group for Elliptic Genus of Level $N$”, Proc. Steklov Inst. Math., 305 (2019), 33–52      •  Number of views: This page: 296 Full text: 85 References: 27 First page: 10 Contact us: math-net2022_01 [at] mi-ras ru Terms of Use Registration to the website Logotypes © Steklov Mathematical Institute RAS, 2022