RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2016, Volume 294, Pages 216–229 (Mi tm3728)  

This article is cited in 2 scientific papers (total in 2 papers)

Elliptic function of level $4$

E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: The article is devoted to the theory of elliptic functions of level $n$. An elliptic function of level $n$ determines a Hirzebruch genus called an elliptic genus of level $n$. Elliptic functions of level $n$ are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level $2$ is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form $F(u,v)=(u^2-v^2)/(uB(v)-vB(u))$, $B(0)=1$. The elliptic function of level $3$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2 A(u))/(uA(v)^2-vA(u)^2)$, $A(0)=1$, $A"(0)=0$. In the present study we show that the elliptic function of level $4$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2A(u))/(uB(v)-vB(u))$, where $A(0)=B(0)=1$ and for $B'(0)=A"(0)=0$, $A'(0)=A_1$, and $B"(0)=2B_2$ the following relation holds: $(2B(u)+3A_1u)^2=4A(u)^3-(3A_1^2-8B_2)u^2A(u)^2$. To prove this result, we express the elliptic function of level $4$ in terms of the Weierstrass elliptic functions.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.1134/S0371968516030122

Full text: PDF file (239 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 294, 201–214

Bibliographic databases:

Document Type: Article
UDC: 512.741+515.178.2+517.965
Received: May 11, 2016

Citation: E. Yu. Bunkova, “Elliptic function of level $4$”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, Tr. Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 216–229; Proc. Steklov Inst. Math., 294 (2016), 201–214

Citation in format AMSBIB
\Bibitem{Bun16}
\by E.~Yu.~Bunkova
\paper Elliptic function of level ~$4$
\inbook Modern problems of mathematics, mechanics, and mathematical physics.~II
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2016
\vol 294
\pages 216--229
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3728}
\crossref{https://doi.org/10.1134/S0371968516030122}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3628501}
\elib{http://elibrary.ru/item.asp?id=26601059}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 294
\pages 201--214
\crossref{https://doi.org/10.1134/S0081543816060122}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000386554900012}
\elib{http://elibrary.ru/item.asp?id=27583651}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992060994}


Linking options:
  • http://mi.mathnet.ru/eng/tm3728
  • http://mi.mathnet.ru/eng/tm/v294/p216

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Ustinov, “Buchstaber Formal Group and Elliptic Functions of Small Levels”, Math. Notes, 102:1 (2017), 81–91  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Elena Yu. Bunkova, “Hirzebruch functional equation: classification of solutions”, Proc. Steklov Inst. Math., 302 (2018), 33–47  mathnet  crossref  crossref
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:173
    References:17
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019