|
Tr. Mat. Inst. Steklova, 2016, Volume 295, Pages 206–217
(Mi tm3759)
|
|
|
|
On the stability of periodic trajectories of a planar Birkhoff billiard
A. P. Markeev Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101-1, Moscow, 119526 Russia
Abstract:
The inertial motion of a material point is analyzed in a plane domain bounded by two curves that are coaxial segments of an ellipse. The collisions of the point with the boundary curves are assumed to be absolutely elastic. There exists a periodic motion of the point that is described by a two-link trajectory lying on a straight line segment passed twice within the period. This segment is orthogonal to both boundary curves at its endpoints. The nonlinear problem of stability of this trajectory is analyzed. The stability and instability conditions are obtained for almost all values of two dimensionless parameters of the problem.
Funding Agency |
Grant Number |
Russian Science Foundation  |
14-21-00068 |
This work is supported by the Russian Science Foundation under grant 14-21-00068 and performed at the Moscow Aviation Institute (National Research University). |
DOI:
https://doi.org/10.1134/S0371968516040129
Full text:
PDF file (205 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 295, 190–201
Bibliographic databases:
UDC:
531.36+531.538 Received: June 14, 2016
Citation:
A. P. Markeev, “On the stability of periodic trajectories of a planar Birkhoff billiard”, Modern problems of mechanics, Collected papers, Tr. Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 206–217; Proc. Steklov Inst. Math., 295 (2016), 190–201
Citation in format AMSBIB
\Bibitem{Mar16}
\by A.~P.~Markeev
\paper On the stability of periodic trajectories of a~planar Birkhoff billiard
\inbook Modern problems of mechanics
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2016
\vol 295
\pages 206--217
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3759}
\crossref{https://doi.org/10.1134/S0371968516040129}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3628522}
\elib{https://elibrary.ru/item.asp?id=27643612}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 295
\pages 190--201
\crossref{https://doi.org/10.1134/S0081543816080125}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000395572400012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010792520}
Linking options:
http://mi.mathnet.ru/eng/tm3759https://doi.org/10.1134/S0371968516040129 http://mi.mathnet.ru/eng/tm/v295/p206
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 162 | Full text: | 21 | References: | 21 | First page: | 7 |
|