RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2017, Volume 296, Pages 95–110 (Mi tm3777)  

This article is cited in 5 scientific papers (total in 5 papers)

A new $k$th derivative estimate for exponential sums via Vinogradov's mean value

D. R. Heath-Brown

Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford, UK

Abstract: We give a slight refinement to the process by which estimates for exponential sums are extracted from bounds for Vinogradov's mean value. Coupling this with the recent works of Wooley, and of Bourgain, Demeter and Guth, providing optimal bounds for the Vinogradov mean value, we produce a powerful new $k$th derivative estimate. Roughly speaking, this improves the van der Corput estimate for $k\ge 4$. Various corollaries are given, showing for example that $\zeta (\sigma +it)\ll _{\varepsilon }t^{(1-\sigma )^{3/2}/2+\varepsilon }$ for $t\ge 2$ and $0\le \sigma \le 1$, for any fixed $\varepsilon >0$.

Funding Agency Grant Number
Engineering and Physical Sciences Research Council EP/K021132X/1
This work was supported by the EPSRC grant no. EP/K021132X/1.


DOI: https://doi.org/10.1134/S0371968517010071

Full text: PDF file (242 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 296, 88–103

Bibliographic databases:

UDC: 511.323
Received: January 18, 2016

Citation: D. R. Heath-Brown, “A new $k$th derivative estimate for exponential sums via Vinogradov's mean value”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Tr. Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 95–110; Proc. Steklov Inst. Math., 296 (2017), 88–103

Citation in format AMSBIB
\Bibitem{Hea17}
\by D.~R.~Heath-Brown
\paper A new $k$th derivative estimate for exponential sums via Vinogradov's mean value
\inbook Analytic and combinatorial number theory
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov
\serial Tr. Mat. Inst. Steklova
\yr 2017
\vol 296
\pages 95--110
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3777}
\crossref{https://doi.org/10.1134/S0371968517010071}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3640775}
\elib{http://elibrary.ru/item.asp?id=28905723}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 296
\pages 88--103
\crossref{https://doi.org/10.1134/S0081543817010072}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000400278600007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017955223}


Linking options:
  • http://mi.mathnet.ru/eng/tm3777
  • https://doi.org/10.1134/S0371968517010071
  • http://mi.mathnet.ru/eng/tm/v296/p95

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Blomer V., Bourgain J., Radziwill M., Rudnick Z., “Small Gaps in the Spectrum of the Rectangular Billiard”, Ann. Sci. Ec. Norm. Super., 50:5 (2017), 1283–1300  crossref  mathscinet  zmath  isi  scopus
    2. Y. Akbal, A. M. Guloglu, “Waring-Goldbach problem with Piatetski-Shapiro primes”, J. Theor. Nr. Bordx., 30:2 (2018), 449–467  crossref  mathscinet  isi
    3. Erdogan M.B., Shakan G., “Fractal Solutions of Dispersive Partial Differential Equations on the Torus”, Sel. Math.-New Ser., 25:1 (2019), UNSP 11  crossref  mathscinet  isi
    4. Pierce L.B., “The Vinogradov Mean Value Theorem [After Wooley, and Bourgain, Demeter and Guth]”, Asterisque, 2019, no. 407, 479+  crossref  isi
    5. Kumchev A., Petrov Zh., “A Hybrid of Two Theorems of Piatetski-Shapiro”, Mon.heft. Math., 189:2 (2019), 355–376  crossref  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:115
    References:18
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019