Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2018, Volume 301, Pages 18–32 (Mi tm3901)  

This article is cited in 4 scientific papers (total in 4 papers)

Lévy Laplacians in Hida calculus and Malliavin calculus

B. O. Volkovab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Bauman Moscow State Technical University, Vtoraya Baumanskaya ul. 5/1, Moscow, 105005 Russia

Abstract: Some connections between different definitions of Lévy Laplacians in the stochastic analysis are considered. Two approaches are used to define these operators. The standard one is based on the application of the theory of Sobolev–Schwartz distributions over the Wiener measure (Hida calculus). One can consider the chain of Lévy Laplacians parametrized by a real parameter with the help of this approach. One of the elements of this chain is the classical Lévy Laplacian. Another approach to defining the Lévy Laplacian is based on the application of the theory of Sobolev spaces over the Wiener measure (Malliavin calculus). It is proved that the Lévy Laplacian defined with the help of the second approach coincides with one of the elements of the chain of Lévy Laplacians, but not with the classical Lévy Laplacian, under the embedding of the Sobolev space over the Wiener measure in the space of generalized functionals over this measure. It is shown which Lévy Laplacian in the stochastic analysis is connected with the gauge fields.

DOI: https://doi.org/10.1134/S0371968518020024

Full text: PDF file (264 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 301, 11–24

Bibliographic databases:

UDC: 517.98
Received: September 27, 2017

Citation: B. O. Volkov, “Lévy Laplacians in Hida calculus and Malliavin calculus”, Complex analysis, mathematical physics, and applications, Collected papers, Trudy Mat. Inst. Steklova, 301, MAIK Nauka/Interperiodica, Moscow, 2018, 18–32; Proc. Steklov Inst. Math., 301 (2018), 11–24

Citation in format AMSBIB
\Bibitem{Vol18}
\by B.~O.~Volkov
\paper L\'evy Laplacians in Hida calculus and Malliavin calculus
\inbook Complex analysis, mathematical physics, and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 301
\pages 18--32
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3901}
\crossref{https://doi.org/10.1134/S0371968518020024}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3841656}
\elib{https://elibrary.ru/item.asp?id=35246282}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 301
\pages 11--24
\crossref{https://doi.org/10.1134/S0081543818040028}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000442104600002}
\elib{https://elibrary.ru/item.asp?id=35748103}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051662466}


Linking options:
  • http://mi.mathnet.ru/eng/tm3901
  • https://doi.org/10.1134/S0371968518020024
  • http://mi.mathnet.ru/eng/tm/v301/p18

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. O. Volkov, “Lévy Laplacians and annihilation process”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 160, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2018, 399–409  mathnet  mathscinet
    2. B. O. Volkov, “Levy differential operators and gauge invariant equations for Dirac and Higgs fields”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:1 (2019), 1950001  crossref  isi
    3. B. O. Volkov, “Levy Laplacian on Manifold and Yang-Mills Heat Flow”, Lobachevskii J. Math., 40:10, SI (2019), 1619–1630  mathnet  crossref  mathscinet  zmath  isi
    4. B. O. Volkov, “Levy Laplacians and instantons on manifolds”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23:2 (2020), 2050008  crossref  mathscinet  zmath  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:355
    Full text:5
    References:61
    First page:9

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021