RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2018, Volume 301, Pages 192–208 (Mi tm3914)  

This article is cited in 1 scientific paper (total in 1 paper)

On the supports of vector equilibrium measures in the Angelesco problem with nested intervals

V. G. Lysovab, D. N. Tulyakova

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
b Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia

Abstract: A vector logarithmic-potential equilibrium problem with the Angelesco interaction matrix is considered for two nested intervals with a common endpoint. The ratio of the lengths of the intervals is a parameter of the problem, and another parameter is the ratio of the masses of the components of the vector equilibrium measure. Two cases are distinguished, depending on the relations between the parameters. In the first case, the equilibrium measure is described by a meromorphic function on a three-sheeted Riemann surface of genus zero, and the supports of the components do not overlap and are connected. In the second case, a solution to the equilibrium problem is found in terms of a meromorphic function on a six-sheeted surface of genus one, and the supports overlap and are not connected.

Funding Agency Grant Number
Russian Science Foundation 14-21-00025
This work is supported by the Russian Science Foundation under grant 14-21-00025.


DOI: https://doi.org/10.1134/S0371968518020140

Full text: PDF file (283 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 301, 180–196

Bibliographic databases:

UDC: 517.53
Received: December 13, 2017

Citation: V. G. Lysov, D. N. Tulyakov, “On the supports of vector equilibrium measures in the Angelesco problem with nested intervals”, Complex analysis, mathematical physics, and applications, Collected papers, Tr. Mat. Inst. Steklova, 301, MAIK Nauka/Interperiodica, Moscow, 2018, 192–208; Proc. Steklov Inst. Math., 301 (2018), 180–196

Citation in format AMSBIB
\Bibitem{LysTul18}
\by V.~G.~Lysov, D.~N.~Tulyakov
\paper On the supports of vector equilibrium measures in the Angelesco problem with nested intervals
\inbook Complex analysis, mathematical physics, and applications
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2018
\vol 301
\pages 192--208
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3914}
\crossref{https://doi.org/10.1134/S0371968518020140}
\elib{https://elibrary.ru/item.asp?id=35246343}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 301
\pages 180--196
\crossref{https://doi.org/10.1134/S0081543818040144}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000442104600014}
\elib{https://elibrary.ru/item.asp?id=35725055}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051653341}


Linking options:
  • http://mi.mathnet.ru/eng/tm3914
  • https://doi.org/10.1134/S0371968518020140
  • http://mi.mathnet.ru/eng/tm/v301/p192

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Aptekarev, R. Kozhan, “Differential equations for the radial limits in $\mathbb{Z}_+^2$ of the solutions of a discrete integrable system”, Preprinty IPM im. M. V. Keldysha, 2018, 214, 20 pp.  mathnet  crossref
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:134
    References:13
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020