|
Тр. МИАН, 2018, том 302, страницы 41–56
(Mi tm3928)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Функциональное уравнение Хирцебруха: классификация решений
Е. Ю. Бунькова Математический институт им. В.А. Стеклова Российской академии наук, Москва, Россия
Аннотация:
Функциональным уравнением Хирцебруха называется уравнение $\sum _{i=1}^n\prod _{j\ne i} (1/f(z_j-z_i))=c$ с константой $c$ и начальными условиями $f(0)=0$, $f'(0)=1$. В работе найдены все решения этого уравнения для $n\leq 6$ в классе мероморфных функций и в классе рядов. Ранее подобные результаты были известны лишь для $n\leq 4$. Функцией Тодда называется функция, определяющая двупараметрический род Тодда (т.е. $\chi _{a,b}$-род). Она является решением функционального уравнения Хирцебруха для любого $n$. Эллиптической функцией уровня $N$ называется функция, определяющая эллиптический род уровня $N$. Она является решением функционального уравнения Хирцебруха для $n$, делящихся на $N$. Рядом, соответствующим мероморфной функции $f$ с параметрами в $U\subset \mathbb C^k$, в работе называется ряд с параметрами в замыкании $U$ по Зарисскому в $\mathbb C^k$ такой, что для параметров в $U$ этот ряд совпадает с разложением в ряд функции $f$ в нуле. Основные результаты работы следующие: (1) любое решение в классе рядов функционального уравнения Хирцебруха для $n=5$ соответствует функции Тодда либо эллиптической функции уровня $5$; (2) любое решение в классе рядов функционального уравнения Хирцебруха для $n=6$ соответствует функции Тодда либо эллиптической функции уровня $2$, $3$ или $6$. Это дает полную классификацию комплексных родов, послойно мультипликативных относительно $\mathbb C\mathrm P^{n-1}$ для $n\leq 6$. Топологическим приложением настоящей работы является эффективное вычисление коэффициентов эллиптических родов уровня $N$ для $N=2,…,6$ в терминах решений дифференциального уравнения с параметрами в неприводимом алгебраическом многообразии в $\mathbb C^4$.
Финансовая поддержка |
Номер гранта |
Российский научный фонд  |
14-50-00005 |
Исследование выполнено за счет гранта Российского научного фонда (проект №14-50-00005). |
DOI:
https://doi.org/10.1134/S0371968518030032
Полный текст:
PDF файл (266 kB)
Первая страница: PDF файл
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Proceedings of the Steklov Institute of Mathematics, 2018, 302, 33–47
Реферативные базы данных:
Тип публикации:
Статья
УДК:
515.178.2+517.547.58+517.583+517.965 Поступило в редакцию: 10 марта 2018 г.
Образец цитирования:
Е. Ю. Бунькова, “Функциональное уравнение Хирцебруха: классификация решений”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Тр. МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 41–56; Proc. Steklov Inst. Math., 302 (2018), 33–47
Цитирование в формате AMSBIB
\RBibitem{Bun18}
\by Е.~Ю.~Бунькова
\paper Функциональное уравнение Хирцебруха: классификация решений
\inbook Топология и физика
\bookinfo Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова
\serial Тр. МИАН
\yr 2018
\vol 302
\pages 41--56
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3928}
\crossref{https://doi.org/10.1134/S0371968518030032}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 33--47
\crossref{https://doi.org/10.1134/S0081543818060032}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454896300003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059467547}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/tm3928https://doi.org/10.1134/S0371968518030032 http://mi.mathnet.ru/rus/tm/v302/p41
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
В. М. Бухштабер, “Кобордизмы, многообразия с действием тора и функциональные уравнения”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Тр. МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 57–97
; V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302 (2018), 48–87
|
Просмотров: |
Эта страница: | 74 | Литература: | 2 | Первая стр.: | 1 |
|