RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2003, Volume 241, Pages 132–168 (Mi tm393)  

This article is cited in 12 scientific papers (total in 12 papers)

On a Classical Correspondence between K3 Surfaces

C. G. Madonnaa, V. V. Nikulinbc

a Università degli Studi di Roma — Tor Vergata
b Steklov Mathematical Institute, Russian Academy of Sciences
c University of Liverpool

Abstract: Let $X$ be a K3 surface that is the intersection (i.e. a net $\mathbb P^2$) of three quadrics in $\mathbb P^5$. The curve of degenerate quadrics has degree 6 and defines a natural double covering $Y$ of $\mathbb P^2$ ramified in this curve which is again a K3. This is a classical example of a correspondence between K3 surfaces that is related to the moduli of sheaves on K3 studied by Mukai. When are general (for fixed Picard lattices) $X$ and $Y$ isomorphic? We give necessary and sufficient conditions in terms of Picard lattices of $X$ and $Y$. For example, for the Picard number 2, the Picard lattice of $X$ and $Y$ is defined by its determinant $-d$, where $d>0$, $d\equiv 1\mod 8$, and one of the equations $a^2-db^2=8$ or $a^2-db^2=-8$ has an integral solution $(a,b)$. Clearly, the set of these $d$ is infinite: $d\in \{(a^2\mp 8)/b^2\}$, where $a$ and $b$ are odd integers. This gives all possible divisorial conditions on the 19-dimensional moduli of intersections of three quadrics $X$ in $\mathbb P^5$, which imply $Y\cong X$. One of them, when $X$ has a line, is classical and corresponds to $d=17$. Similar considerations can be applied to a realization of an isomorphism $(T(X)\otimes \mathbb Q, H^{2,0}(X)) \cong (T(Y)\otimes \mathbb Q, H^{2,0}(Y))$ of transcendental periods over $\mathbb Q$ of two K3 surfaces $X$ and $Y$ by a fixed sequence of types of Mukai vectors.

Full text: PDF file (441 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2003, 241, 120–153

Bibliographic databases:
UDC: 512.7
Received in November 2002

Citation: C. G. Madonna, V. V. Nikulin, “On a Classical Correspondence between K3 Surfaces”, Number theory, algebra, and algebraic geometry, Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich, Tr. Mat. Inst. Steklova, 241, Nauka, MAIK Nauka/Inteperiodika, M., 2003, 132–168; Proc. Steklov Inst. Math., 241 (2003), 120–153

Citation in format AMSBIB
\Bibitem{MadNik03}
\by C.~G.~Madonna, V.~V.~Nikulin
\paper On a~Classical Correspondence between K3 Surfaces
\inbook Number theory, algebra, and algebraic geometry
\bookinfo Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich
\serial Tr. Mat. Inst. Steklova
\yr 2003
\vol 241
\pages 132--168
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm393}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2024049}
\zmath{https://zbmath.org/?q=an:1076.14046}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 241
\pages 120--153


Linking options:
  • http://mi.mathnet.ru/eng/tm393
  • http://mi.mathnet.ru/eng/tm/v241/p132

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Nikulin, “On Correspondences of a K3 Surface with Itself. I”, Proc. Steklov Inst. Math., 246 (2004), 204–226  mathnet  mathscinet  zmath
    2. Madonna C.G., “On some moduli spaces of bundles on $K3$ surfaces”, Monatsh. Math., 146:4 (2005), 333–339  crossref  mathscinet  zmath  isi  scopus
    3. Dujella A., Franušić Z., “On differences of two squares in some quadratic fields”, Rocky Mountain J. Math., 37:2 (2007), 429–453  crossref  mathscinet  zmath  isi  scopus
    4. Cynk S., Rams S., “On a map between two K3 surfaces associated to a net of quadrics”, Arch. Math. (Basel), 88:2 (2007), 109–122  crossref  mathscinet  zmath  isi  scopus
    5. Nikulin V.V., “On correspondences of a K3 surface with itself. II”, Algebraic Geometry, Contemporary Mathematics Series, 422, 2007, 121–172  crossref  mathscinet  zmath  isi
    6. C. G. Madonna, V. V. Nikulin, “Explicit correspondences of a K3 surface with itself”, Izv. Math., 72:3 (2008), 497–508  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. Viacheslav V. Nikulin, “Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups”, Proc. Steklov Inst. Math., 273 (2011), 229–237  mathnet  crossref  mathscinet  zmath  isi  elib
    8. Michalek M., “Birational Maps Between Calabi-Yau Manifolds Associated to Webs of Quadrics”, J. Algebra, 370 (2012), 186–197  crossref  mathscinet  zmath  isi  scopus
    9. Madonna C.G., “On Some Moduli Spaces of Bundles on K3 Surfaces, II”, Proc. Amer. Math. Soc., 140:10 (2012), 3397–3408  crossref  mathscinet  zmath  isi  elib  scopus
    10. Cynk S., Rams S., “on Calabi-Yau Threefolds Associated To a Web of Quadrics”, Forum Math., 27:2 (2015), 699–734  crossref  mathscinet  zmath  isi  elib  scopus
    11. Kuznetsov A., Shinder E., “Grothendieck Ring of Varieties, D- and l-Equivalence, and Families of Quadrics”, Sel. Math.-New Ser., 24:4 (2018), 3475–3500  crossref  mathscinet  zmath  isi  scopus
    12. V. A. Krasnov, “On a classical correspondence of real K3 surfaces”, Izv. Math., 82:4 (2018), 662–693  mathnet  crossref  crossref  adsnasa  isi  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:331
    Full text:94
    References:46

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021