RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2018, Volume 302, Pages 98–142 (Mi tm3934)  

This article is cited in 1 scientific paper (total in 1 paper)

Microformal geometry and homotopy algebras

Th. Th. Voronovab

a School of Mathematics, University of Manchester, Manchester M13 9PL, UK
b Faculty of Physics, Tomsk State University, Novosobornaya pl. 1, Tomsk, 634050 Russia

Abstract: We extend the category of (super)manifolds and their smooth mappings by introducing a notion of microformal, or “thick,” morphisms. They are formal canonical relations of a special form, constructed with the help of formal power expansions in cotangent directions. The result is a formal category so that its composition law is also specified by a formal power series. A microformal morphism acts on functions by an operation of pullback, which is in general a nonlinear transformation. More precisely, it is a formal mapping of formal manifolds of even functions (bosonic fields), which has the property that its derivative for every function is a ring homomorphism. This suggests an abstract notion of a “nonlinear algebra homomorphism” and the corresponding extension of the classical “algebraic–functional” duality. There is a parallel fermionic version. The obtained formalism provides a general construction of $L_\infty $-morphisms for functions on homotopy Poisson ($P_\infty $) or homotopy Schouten ($S_\infty $) manifolds as pullbacks by Poisson microformal morphisms. We also show that the notion of the adjoint can be generalized to nonlinear operators as a microformal morphism. By applying this to $L_\infty $-algebroids, we show that an $L_\infty $-morphism of $L_\infty $-algebroids induces an $L_\infty $-morphism of the “homotopy Lie–Poisson” brackets for functions on the dual vector bundles. We apply this construction to higher Koszul brackets on differential forms and to triangular $L_\infty $-bialgebroids. We also develop a quantum version (for the bosonic case), whose relation to the classical version is like that of the Schrödinger equation to the Hamilton–Jacobi equation. We show that the nonlinear pullbacks by microformal morphisms are the limits as $\hbar \to 0$ of certain “quantum pullbacks,” which are defined as special form Fourier integral operators.

DOI: https://doi.org/10.1134/S0371968518030056

Full text: PDF file (488 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 302, 88–129

Bibliographic databases:

UDC: 515.16
Received: January 4, 2018

Citation: Th. Th. Voronov, “Microformal geometry and homotopy algebras”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Tr. Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 98–142; Proc. Steklov Inst. Math., 302 (2018), 88–129

Citation in format AMSBIB
\Bibitem{Vor18}
\by Th.~Th.~Voronov
\paper Microformal geometry and homotopy algebras
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 98--142
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3934}
\crossref{https://doi.org/10.1134/S0371968518030056}
\elib{http://elibrary.ru/item.asp?id=36503436}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 88--129
\crossref{https://doi.org/10.1134/S0081543818060056}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454896300005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059519959}


Linking options:
  • http://mi.mathnet.ru/eng/tm3934
  • https://doi.org/10.1134/S0371968518030056
  • http://mi.mathnet.ru/eng/tm/v302/p98

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Karabegov A., “Formal Oscillatory Integrals and Deformation Quantization”, Lett. Math. Phys., 109:8 (2019), 1907–1937  crossref  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:114
    References:12
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019