RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2019, Volume 305, Pages 7–28 (Mi tm3995)  

Higher Whitehead Products in Moment–Angle Complexes and Substitution of Simplicial Complexes

Semyon A. Abramyana, Taras E. Panovbcd

a Laboratory of Algebraic Geometry and Its Applications, National Research University Higher School of Economics, ul. Usacheva 6, Moscow, 119048 Russia
b Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
c Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Bol'shaya Cheremushkinskaya ul. 25, Moscow, 117218 Russia
d Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, str. 1, Moscow, 127051 Russia

Abstract: We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex $\mathcal Z_\mathcal K$. Namely, we say that a simplicial complex $\mathcal K$ realises an iterated higher Whitehead product $w$ if $w$ is a nontrivial element of $\pi _*(\mathcal Z_\mathcal K)$. The combinatorial approach to the question of realisability uses the operation of substitution of simplicial complexes: for any iterated higher Whitehead product $w$ we describe a simplicial complex $\partial \Delta _w$ that realises $w$. Furthermore, for a particular form of brackets inside $w$, we prove that $\partial \Delta _w$ is the smallest complex that realises $w$. We also give a combinatorial criterion for the nontriviality of the product $w$. In the proof of nontriviality we use the Hurewicz image of $w$ in the cellular chains of $\mathcal Z_\mathcal K$ and the description of the cohomology product of $\mathcal Z_\mathcal K$. The second approach is algebraic: we use the coalgebraic versions of the Koszul and Taylor complexes for the face coalgebra of $\mathcal K$ to describe the canonical cycles corresponding to iterated higher Whitehead products $w$. This gives another criterion for realisability of $w$.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-51-50005
17-01-00671
Ministry of Education and Science of the Russian Federation 5-100
HSE Basic Research Program
Simons Foundation
The first author was partially supported by the HSE Basic Research Program, the Russian Academic Excellence Project ‘5-100’, the Russian Foundation for Basic Research (project no. 18-51-50005), and the Simons Foundation. The second author was partially supported by the Russian Foundation for Basic Research (project nos. 17-01-00671 and 18-51-50005) and the Simons Foundation.


DOI: https://doi.org/10.4213/tm3995

Full text: PDF file (346 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2019, 305, 1–21

Bibliographic databases:

UDC: 515.143+515.146
Received: December 25, 2018
Revised: March 4, 2019
Accepted: March 6, 2019

Citation: Semyon A. Abramyan, Taras E. Panov, “Higher Whitehead Products in Moment–Angle Complexes and Substitution of Simplicial Complexes”, Algebraic topology, combinatorics, and mathematical physics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday, Tr. Mat. Inst. Steklova, 305, Steklov Math. Inst. RAS, Moscow, 2019, 7–28; Proc. Steklov Inst. Math., 305 (2019), 1–21

Citation in format AMSBIB
\Bibitem{AbrPan19}
\by Semyon~A.~Abramyan, Taras~E.~Panov
\paper Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes
\inbook Algebraic topology, combinatorics, and mathematical physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2019
\vol 305
\pages 7--28
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3995}
\crossref{https://doi.org/10.4213/tm3995}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 305
\pages 1--21
\crossref{https://doi.org/10.1134/S0081543819030015}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000491421700001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073514581}


Linking options:
  • http://mi.mathnet.ru/eng/tm3995
  • https://doi.org/10.4213/tm3995
  • http://mi.mathnet.ru/eng/tm/v305/p7

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:117
    References:4
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019