Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2019, Volume 306, Pages 258–272 (Mi tm4021)  

This article is cited in 7 scientific papers (total in 7 papers)

Pseudomode Approach and Vibronic Non-Markovian Phenomena in Light-Harvesting Complexes

A. E. Teretenkovab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Faculty of Physics, Moscow State University, Moscow, 119991 Russia

Abstract: The pseudomode approach is discussed, with emphasis on the Gorini–Kossakowski–Sudarshan–Lindblad form of this approach. The connection of the pseudomode approach with solutions of the Friedrichs model and the Jaynes–Cummings model with dissipation at zero temperature is shown. The obtained results are applied to the description of non-Markovian phenomena in the Fenna–Matthews–Olson complexes. Estimations based on experimental data are presented. A generalization of the pseudomode approach to the finite-temperature case with the use of the deformation technique is discussed.

Funding Agency Grant Number
Russian Science Foundation 17-71-20154
This work is supported by the Russian Science Foundation under grant 17-71-20154.


DOI: https://doi.org/10.4213/tm4021

Full text: PDF file (242 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2019, 306, 242–256

Bibliographic databases:

UDC: 517.958
Received: September 15, 2018
Revised: September 25, 2018
Accepted: June 4, 2019

Citation: A. E. Teretenkov, “Pseudomode Approach and Vibronic Non-Markovian Phenomena in Light-Harvesting Complexes”, Mathematical physics and applications, Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 306, Steklov Math. Inst. RAS, Moscow, 2019, 258–272; Proc. Steklov Inst. Math., 306 (2019), 242–256

Citation in format AMSBIB
\Bibitem{Ter19}
\by A.~E.~Teretenkov
\paper Pseudomode Approach and Vibronic Non-Markovian Phenomena in Light-Harvesting Complexes
\inbook Mathematical physics and applications
\bookinfo Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 306
\pages 258--272
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4021}
\crossref{https://doi.org/10.4213/tm4021}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4040779}
\elib{https://elibrary.ru/item.asp?id=43206337}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 306
\pages 242--256
\crossref{https://doi.org/10.1134/S0081543819050201}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000511670100020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073594746}


Linking options:
  • http://mi.mathnet.ru/eng/tm4021
  • https://doi.org/10.4213/tm4021
  • http://mi.mathnet.ru/eng/tm/v306/p258

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Teretenkov A.E., “Non-Markovian Evolution of Multi-Level System Interacting With Several Reservoirs. Exact and Approximate”, Lobachevskii J. Math., 40:10, SI (2019), 1587–1605  mathnet  crossref  mathscinet  zmath  isi
    2. Trushechkin A.S., “Higher-Order Corrections to the Redfield Equation With Respect to the System-Bath Coupling Based on the Hierarchical Equations of Motion”, Lobachevskii J. Math., 40:10, SI (2019), 1606–1618  mathnet  crossref  mathscinet  zmath  isi
    3. Yu. A. Nosal, A. E. Teretenkov, “Exact Dynamics of Moments and Correlation Functions for GKSL Fermionic Equations of Poisson Type”, Math. Notes, 108:6 (2020), 911–915  mathnet  crossref  crossref  mathscinet  isi  elib
    4. A. E. Teretenkov, “Exact non-Markovian evolution with several reservoirs”, Phys. Part. Nuclei, 51:4 (2020), 479–484  crossref  mathscinet  isi
    5. A. E. Teretenkov, “Integral Representation of Finite Temperature Non-Markovian Evolution of Some Systems in Rotating Wave Approximation”, Lobachevskii J. Math., 41:12, SI (2020), 2397–2404  mathnet  crossref  zmath  isi
    6. A. E. Teretenkov, “An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations”, Proc. Steklov Inst. Math., 313 (2021), 236–245  mathnet  crossref  crossref  isi  elib
    7. A. S. Trushechkin, “Derivation of the Redfield Quantum Master Equation and Corrections to It by the Bogoliubov Method”, Proc. Steklov Inst. Math., 313 (2021), 246–257  mathnet  crossref  crossref  isi  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:191
    References:12
    First page:6

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021