Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2020, Volume 309, Pages 99–109 (Mi tm4082)  

This article is cited in 2 scientific papers (total in 2 papers)

Symplectic Structures on Teichmüller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras

Leonid O. Chekhovab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Michigan State University, 426 Auditorium Rd., East Lansing, MI 48824, USA

Abstract: We recall the fat-graph description of Riemann surfaces $\Sigma _{g,s,n}$ and the corresponding Teichmüller spaces $\mathfrak T_{g,s,n}$ with $s>0$ holes and $n>0$ bordered cusps in the hyperbolic geometry setting. If $n>0$, we have a bijection between the set of Thurston shear coordinates and Penner's $\lambda $-lengths. Then we can define, on the one hand, a Poisson bracket on $\lambda $‑lengths that is induced by the Poisson bracket on shear coordinates introduced by V. V. Fock in 1997 and, on the other hand, a symplectic structure $\Omega_\mathrm{WP}$ on the set of extended shear coordinates that is induced by Penner's symplectic structure on $\lambda $-lengths. We derive the symplectic structure $\Omega_\mathrm{WP}$, which turns out to be similar to Kontsevich's symplectic structure for $\psi $-classes in complex analytic geometry, and demonstrate that it is indeed inverse to Fock's Poisson structure.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00460
The work was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00460.


DOI: https://doi.org/10.4213/tm4082

Full text: PDF file (245 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2020, 309, 87–96

Bibliographic databases:

UDC: 514.7+512.548
Received: October 21, 2019
Revised: December 9, 2019
Accepted: February 11, 2020

Citation: Leonid O. Chekhov, “Symplectic Structures on Teichmüller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras”, Modern problems of mathematical and theoretical physics, Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov, Trudy Mat. Inst. Steklova, 309, Steklov Math. Inst. RAS, Moscow, 2020, 99–109; Proc. Steklov Inst. Math., 309 (2020), 87–96

Citation in format AMSBIB
\Bibitem{Che20}
\by Leonid~O.~Chekhov
\paper Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
\inbook Modern problems of mathematical and theoretical physics
\bookinfo Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 309
\pages 99--109
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4082}
\crossref{https://doi.org/10.4213/tm4082}
\elib{https://elibrary.ru/item.asp?id=45368001}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 309
\pages 87--96
\crossref{https://doi.org/10.1134/S0081543820030074}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000557522500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089224548}


Linking options:
  • http://mi.mathnet.ru/eng/tm4082
  • https://doi.org/10.4213/tm4082
  • http://mi.mathnet.ru/eng/tm/v309/p99

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. O. Chekhov, “Fenchel–Nielsen coordinates and Goldman brackets”, Russian Math. Surveys, 75:5 (2020), 929–964  mathnet  crossref  crossref  mathscinet  isi  elib
    2. M. Bertola, D. A. Korotkin, “WKB expansion for a Yang–Yang generating function and the Bergman tau function”, Theoret. and Math. Phys., 206:3 (2021), 258–295  mathnet  crossref  crossref  mathscinet  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:89
    References:4
    First page:6

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021