Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2020, Volume 311, Pages 164–182 (Mi tm4117)  

Weakly Lacunary Orthogonal Systems and Properties of the Maximal Partial Sum Operator for Subsystems

B. S. Kashinab, I. V. Limonovabc

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, 119991 Russia
c Laboratory “High-Dimensional Approximation and Applications,” Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia

Abstract: For a finite orthogonal system of uniformly bounded functions, we establish the existence of sufficiently dense subsystems with the lacunarity property and a good norm estimate for the maximal partial sum operator.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 14.W03.31.0031
Isaac Newton Institute for Mathematical Science
This work was supported by a grant of the Government of the Russian Federation (project no. 14.W03.31.0031). The first author is also grateful to the Isaac Newton Institute (Cambridge) for the support of this research within the program “Approximation, Sampling and Compression in Data Science.”


DOI: https://doi.org/10.4213/tm4117

Full text: PDF file (279 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2020, 311, 152–170

Bibliographic databases:

UDC: 517.5
Received: December 27, 2019
Revised: April 7, 2020
Accepted: May 26, 2020

Citation: B. S. Kashin, I. V. Limonova, “Weakly Lacunary Orthogonal Systems and Properties of the Maximal Partial Sum Operator for Subsystems”, Analysis and mathematical physics, Collected papers. On the occasion of the 70th birthday of Professor Armen Glebovich Sergeev, Trudy Mat. Inst. Steklova, 311, Steklov Math. Inst., Moscow, 2020, 164–182; Proc. Steklov Inst. Math., 311 (2020), 152–170

Citation in format AMSBIB
\Bibitem{KasLim20}
\by B.~S.~Kashin, I.~V.~Limonova
\paper Weakly Lacunary Orthogonal Systems and Properties of the Maximal Partial Sum Operator for Subsystems
\inbook Analysis and mathematical physics
\bookinfo Collected papers. On the occasion of the 70th birthday of Professor Armen Glebovich Sergeev
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 311
\pages 164--182
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4117}
\crossref{https://doi.org/10.4213/tm4117}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4223987}
\elib{https://elibrary.ru/item.asp?id=44960872}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 311
\pages 152--170
\crossref{https://doi.org/10.1134/S0081543820060097}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000614212700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100330041}


Linking options:
  • http://mi.mathnet.ru/eng/tm4117
  • https://doi.org/10.4213/tm4117
  • http://mi.mathnet.ru/eng/tm/v311/p164

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:219
    References:11
    First page:20

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021