RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2003, Volume 243, Pages 257–288 (Mi tm433)  

This article is cited in 4 scientific papers (total in 5 papers)

On a priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws

S. I. Pokhozhaev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: This paper is devoted to a priori estimates and blow-up of global smooth solutions to the Cauchy problem for nonlinear hyperbolic systems of conservation laws. A general approach is proposed to obtain integral a priori estimates for smooth solutions of such systems. An application to a system of equations for one-dimensional nonisentropic and isentropic flows of a polytropic gas is considered. Integral conditions for the initial data are found that give rise to the gradient catastrophe of such solutions.

Full text: PDF file (342 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2003, 243, 247–277

Bibliographic databases:

Document Type: Article
UDC: 517.9
Received in March 2003

Citation: S. I. Pokhozhaev, “On a priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws”, Function spaces, approximations, and differential equations, Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS, Tr. Mat. Inst. Steklova, 243, Nauka, MAIK Nauka/Inteperiodika, M., 2003, 257–288; Proc. Steklov Inst. Math., 243 (2003), 247–277

Citation in format AMSBIB
\Bibitem{Pok03}
\by S.~I.~Pokhozhaev
\paper On a~priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws
\inbook Function spaces, approximations, and differential equations
\bookinfo Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS
\serial Tr. Mat. Inst. Steklova
\yr 2003
\vol 243
\pages 257--288
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm433}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2054438}
\zmath{https://zbmath.org/?q=an:1077.35093}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 243
\pages 247--277


Linking options:
  • http://mi.mathnet.ru/eng/tm433
  • http://mi.mathnet.ru/eng/tm/v243/p257

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. V. Besov, A. M. Il'in, V. A. Il'in, L. D. Kudryavtsev, S. M. Nikol'skii, L. V. Ovsyannikov, E. Mitidieri, A. Tesei, L. Véron, “Stanislav Ivanovich Pokhozhaev (on his 70th birthday)”, Russian Math. Surveys, 61:2 (2006), 373–378  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. P. P. Matus, “Well-posedness of difference schemes for semilinear parabolic equations with weak solutions”, Comput. Math. Math. Phys., 50:12 (2010), 2044–2063  mathnet  crossref  adsnasa
    3. V. Zh. Sakbaev, “Gradient blow-up of solutions to the Cauchy problem for the Schrödinger equation”, Proc. Steklov Inst. Math., 283 (2013), 165–180  mathnet  crossref  crossref  mathscinet  isi
    4. T. K. Yuldashev, “Obratnaya zadacha dlya odnogo nelineinogo integrodifferentsialnogo uravneniya tretego poryadka”, Vestn. SamGU. Estestvennonauchn. ser., 2013, no. 9/1(110), 58–66  mathnet
    5. Tursun K. Yuldashev, “On differentiability of the solution of the mixed boundary value problem for a nonlinear pseudohyperbolic equation with respect to small parameters”, Zhurn. SFU. Ser. Matem. i fiz., 7:2 (2014), 260–271  mathnet
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:215
    Full text:63
    References:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018