Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2004, Volume 244, Pages 65–86 (Mi tm443)  

This article is cited in 5 scientific papers (total in 5 papers)

Cramér Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motions

V. I. Bakhtin

Belarusian State University, Faculty of Physics

Abstract: A dynamical system $w'=S(w,z,\varepsilon )$, $z'=z+\varepsilon v(w,z,\varepsilon )$ is considered. It is assumed that slow motions are determined by the vector field $v(w,z,\varepsilon )$ in the Euclidean space and fast motions occur in a neighborhood of a topologically mixing hyperbolic attractor. For the difference between the real and averaged slow motions, the central limit theorem is proved and sharp asymptotics for the probabilities of large deviations (that do not exceed $\varepsilon ^\delta$) are calculated; the exponent $\delta$ depends on the smoothness of the system and approaches zero as the smoothness increases.

Full text: PDF file (318 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2004, 244, 58–79

Bibliographic databases:
UDC: 517.987+519.21
Received in May 2002

Citation: V. I. Bakhtin, “Cramér Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motions”, Dynamical systems and related problems of geometry, Collected papers. Dedicated to the memory of academician Andrei Andreevich Bolibrukh, Trudy Mat. Inst. Steklova, 244, Nauka, MAIK Nauka/Inteperiodika, M., 2004, 65–86; Proc. Steklov Inst. Math., 244 (2004), 58–79

Citation in format AMSBIB
\Bibitem{Bak04}
\by V.~I.~Bakhtin
\paper Cram\'er Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motions
\inbook Dynamical systems and related problems of geometry
\bookinfo Collected papers. Dedicated to the memory of academician Andrei Andreevich Bolibrukh
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 244
\pages 65--86
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm443}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2075113}
\zmath{https://zbmath.org/?q=an:1078.37019}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 244
\pages 58--79


Linking options:
  • http://mi.mathnet.ru/eng/tm443
  • http://mi.mathnet.ru/eng/tm/v244/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. I. Dolgopyat, “Averaging and invariant measures”, Mosc. Math. J., 5:3 (2005), 537–576  mathnet  crossref  mathscinet  zmath
    2. Kifer Yu., “Another proof of the averaging principle for fully coupled dynamical systems with hyperbolic fast motions”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1187–1201  crossref  mathscinet  zmath  isi  scopus
    3. Bakhtin V., Kifer Yu., “Nonconvergence examples in averaging”, Geometric and Probabilistic Structures in Dynamics, Contemporary Mathematics Series, 469, 2008, 1–17  crossref  mathscinet  isi
    4. Kifer Yu., Large deviations and adiabatic transitions for dynamical systems and Markov processes in fully coupled averaging, Mem. Amer. Math. Soc., 201, no. 944, 2009, viii+129 pp.  mathscinet  isi
    5. De Simoi J., Liverani C., “Limit Theorems For Fast-Slow Partially Hyperbolic Systems”, Invent. Math., 213:3 (2018), 811–1016  crossref  mathscinet  zmath  isi  scopus
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:291
    Full text:72
    References:41

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022