RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2007, Volume 256, Pages 31–53 (Mi tm454)  

This article is cited in 2 scientific papers (total in 2 papers)

The Curvature and Hyperbolicity of Hamiltonian Systems

A. A. Agrachevab

a Steklov Mathematical Institute, Russian Academy of Sciences
b International School for Advanced Studies (SISSA)

Abstract: Curvature-type invariants of Hamiltonian systems generalize sectional curvatures of Riemannian manifolds: the negativity of the curvature is an indicator of the hyperbolic behavior of the Hamiltonian flow. In this paper, we give a self-contained description of the related constructions and facts; they lead to a natural extension of the classical results about Riemannian geodesic flows and indicate some new phenomena.

Full text: PDF file (330 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2007, 256, 26–46

Bibliographic databases:

Document Type: Article
UDC: 519.6
Received in July 2006

Citation: A. A. Agrachev, “The Curvature and Hyperbolicity of Hamiltonian Systems”, Dynamical systems and optimization, Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov, Tr. Mat. Inst. Steklova, 256, Nauka, MAIK Nauka/Inteperiodika, M., 2007, 31–53; Proc. Steklov Inst. Math., 256 (2007), 26–46

Citation in format AMSBIB
\Bibitem{Agr07}
\by A.~A.~Agrachev
\paper The Curvature and Hyperbolicity of Hamiltonian Systems
\inbook Dynamical systems and optimization
\bookinfo Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov
\serial Tr. Mat. Inst. Steklova
\yr 2007
\vol 256
\pages 31--53
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm454}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2336892}
\zmath{https://zbmath.org/?q=an:1153.37346}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 256
\pages 26--46
\crossref{https://doi.org/10.1134/S0081543807010026}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248402457}


Linking options:
  • http://mi.mathnet.ru/eng/tm454
  • http://mi.mathnet.ru/eng/tm/v256/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Agrachev, “Well-posed infinite horizon variational problems on a compact manifold”, Proc. Steklov Inst. Math., 268 (2010), 17–31  mathnet  crossref  mathscinet  zmath  isi
    2. Jakubczyk B., Krynski W., “Vector Fields with Distributions and Invariants of ODEs”, J. Geom. Mech., 5:1 (2013), 85–129  crossref  mathscinet  zmath  isi  elib  scopus
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:286
    Full text:63
    References:41

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019