RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2007, Volume 258, Pages 185–200 (Mi tm483)  

This article is cited in 2 scientific papers (total in 2 papers)

Hyperbolic Carathéodory Conjecture

S. L. Tabachnikova, V. Yu. Ovsienkob

a Department of Mathematics, Pennsylvania State University
b Institut Camille Jordan, Université Claude Bernard Lyon 1

Abstract: A quadratic point on a surface in $\mathbb R\mathrm P^3$ is a point at which the surface can be approximated by a quadric abnormally well (up to order 3). We conjecture that the least number of quadratic points on a generic compact nondegenerate hyperbolic surface is 8; the relation between this and the classic Carathéodory conjecture is similar to the relation between the six-vertex and the four-vertex theorems on plane curves. Examples of quartic perturbations of the standard hyperboloid confirm our conjecture. Our main result is a linearization and reformulation of the problem in the framework of the 2-dimensional Sturm theory; we also define a signature of a quadratic point and calculate local normal forms recovering and generalizing the Tresse–Wilczynski theorem.

Full text: PDF file (253 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2007, 258, 178–193

Bibliographic databases:

UDC: 514.7
Received in November 2006
Language:

Citation: S. L. Tabachnikov, V. Yu. Ovsienko, “Hyperbolic Carathéodory Conjecture”, Analysis and singularities. Part 1, Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday, Tr. Mat. Inst. Steklova, 258, Nauka, MAIK Nauka/Inteperiodika, M., 2007, 185–200; Proc. Steklov Inst. Math., 258 (2007), 178–193

Citation in format AMSBIB
\Bibitem{TabOvs07}
\by S.~L.~Tabachnikov, V.~Yu.~Ovsienko
\paper Hyperbolic Carath\'eodory Conjecture
\inbook Analysis and singularities. Part~1
\bookinfo Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2007
\vol 258
\pages 185--200
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm483}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2400530}
\zmath{https://zbmath.org/?q=an:1163.53004}
\elib{http://elibrary.ru/item.asp?id=9549689}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 258
\pages 178--193
\crossref{https://doi.org/10.1134/S0081543807030133}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35148894665}


Linking options:
  • http://mi.mathnet.ru/eng/tm483
  • http://mi.mathnet.ru/eng/tm/v258/p185

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Freitas B.R., Garcia R.A., “Inflection Points on Hyperbolic Tori of S-3”, Q. J. Math., 69:2 (2018), 709–728  crossref  mathscinet  isi  scopus
    2. Uribe-Vargas R., “On Projective Umbilics: a Geometric Invariant and An Index”, J. Singul., 17 (2018), 81–90  crossref  mathscinet  zmath  isi  scopus
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:243
    Full text:67
    References:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020