RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2000, Volume 228, Pages 90–100 (Mi tm493)  

This article is cited in 7 scientific papers (total in 7 papers)

Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations

H. Grossea, M. Oberguggenbergerb, I. T. Todorovc

a Institute for Theoretical Physics
b Institut für Mathematik, Universität Innsbruck
c International Erwin Schrödinger Institute for Mathematical Physics

Abstract: The axiomatic formulation of quantum field theory (QFT) of the 1950's in terms of fields defined as operator valued Schwartz distributions is re-examined in the light of subsequent developments. These include, on the physical side, the construction of a wealth of (2-dimensional) soluble QFT models with quadratic exchange relations, and, on the mathematical side, the introduction of the Colombeau algebras of generalized functions. Exploiting the fact that energy positivity gives rise to a natural regularization of Wightman distributions as analytic functions in a tube domain, we argue that the flexible notions of Colombeau theory which can exploit particular regularizations is better suited (than Schwartz distributions) for a mathematical formulation of QFT.

Full text: PDF file (170 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2000, 228, 81–91

Bibliographic databases:

UDC: 530.1
Received in September 1999
Language: English

Citation: H. Grosse, M. Oberguggenberger, I. T. Todorov, “Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations”, Problems of the modern mathematical physics, Collection of papers dedicated to the 90th anniversary of academician Nikolai Nikolaevich Bogolyubov, Tr. Mat. Inst. Steklova, 228, Nauka, MAIK Nauka/Inteperiodika, M., 2000, 90–100; Proc. Steklov Inst. Math., 228 (2000), 81–91

Citation in format AMSBIB
\Bibitem{GroObeTod00}
\by H.~Grosse, M.~Oberguggenberger, I.~T.~Todorov
\paper Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations
\inbook Problems of the modern mathematical physics
\bookinfo Collection of papers dedicated to the 90th anniversary of academician Nikolai Nikolaevich Bogolyubov
\serial Tr. Mat. Inst. Steklova
\yr 2000
\vol 228
\pages 90--100
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm493}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1782574}
\zmath{https://zbmath.org/?q=an:0986.81071}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2000
\vol 228
\pages 81--91


Linking options:
  • http://mi.mathnet.ru/eng/tm493
  • http://mi.mathnet.ru/eng/tm/v228/p90

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Oberguggenberger M., “Generalized functions in nonlinear models – a survey”, Nonlinear Analysis–Theory Methods & Applications, 47:8, Part 8 Sp. Iss. SI (2001), 5029–5040  crossref  mathscinet  zmath  isi  scopus  scopus
    2. “On the Foundations of Nonlinear Generalized Functions I and II”, Memoirs of the American Mathematical Society, 153:729 (2001), 1–93  mathscinet  isi
    3. Khrennikov A.Y., Shelkovich V.M., Smolyanov O.G., “Locally convex spaces of vector–valued distributions with multiplicative structures”, Infinite Dimensional Analysis Quantum Probability and Related Topics, 5:4 (2002), 483–502  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Nagamachi S., Bruning E., “Hyperfunction quantum field theory: Localized fields without localized test functions”, Letters in Mathematical Physics, 63:2 (2003), 141–155  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Droz-Vincent Ph., “Scalar products of elementary distributions”, Journal of Mathematical Physics, 49:6 (2008), 063501  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Hoermann G., “The Cauchy problem for Schrodinger-type partial differential operators with generalized functions in the principal part and as data”, Monatsh Math, 163:4 (2011), 445–460  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Sarizadeh A., “Non-Removable Term Ergodic Action Semigroups/Groups”, Proc. Amer. Math. Soc., 143:8 (2015), 3445–3453  crossref  mathscinet  zmath  isi  scopus  scopus
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:189
    Full text:52
    References:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019