RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2000, Volume 228, Pages 203–216 (Mi tm501)  

This article is cited in 52 scientific papers (total in 52 papers)

Asymptotic Time Evolution of a Partitioned Infinite Two-sided Isotropic $XY$-chain

T. G. Hoab, H. Arakib

a Tokyo University of Science
b European Union Science and Technology Research Fellow

Abstract: The system under consideration is that of a two-sided infinite isotropic $XY$-chain partitioned into two distinct regions. Each side is initially in thermal equilibrium. We investigate the situation when the partition is removed at time $t=0$. For $t\rightarrow\infty the system approaches thermal equilibrium if the two sides were at the same temperature. If initially the two sides were at different temperatures then the system approaches a steady state.

Full text: PDF file (203 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2000, 228, 191–204

Bibliographic databases:
UDC: 531.19
Received in September 1999
Language:

Citation: T. G. Ho, H. Araki, “Asymptotic Time Evolution of a Partitioned Infinite Two-sided Isotropic $XY$-chain”, Problems of the modern mathematical physics, Collection of papers dedicated to the 90th anniversary of academician Nikolai Nikolaevich Bogolyubov, Tr. Mat. Inst. Steklova, 228, Nauka, MAIK Nauka/Inteperiodika, M., 2000, 203–216; Proc. Steklov Inst. Math., 228 (2000), 191–204

Citation in format AMSBIB
\Bibitem{HoAra00}
\by T.~G.~Ho, H.~Araki
\paper Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
\inbook Problems of the modern mathematical physics
\bookinfo Collection of papers dedicated to the 90th anniversary of academician Nikolai Nikolaevich Bogolyubov
\serial Tr. Mat. Inst. Steklova
\yr 2000
\vol 228
\pages 203--216
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm501}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1782582}
\zmath{https://zbmath.org/?q=an:1034.82008}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2000
\vol 228
\pages 191--204


Linking options:
  • http://mi.mathnet.ru/eng/tm501
  • http://mi.mathnet.ru/eng/tm/v228/p203

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Tasaki S., “Nonequilibrium stationary states of noninteracting electrons in a one–dimensional lattice”, Chaos Solitons & Fractals, 12:14–15 (2001), 2657–2674  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. Ogata Y., “Diffusion of the magnetization profile in the XX model”, Physical Review E, 66:6, Part 2 (2002), 066123  crossref  adsnasa  isi  scopus  scopus
    3. Ogata Y., “Nonequilibrium properties in the transverse XX chain”, Physical Review E, 66:1, Part 2 (2002), 016135  crossref  mathscinet  adsnasa  isi
    4. Tasaki S., “Thermodynamic Behavior of large dynamical systems - Quantum 1d conductor and classical multibaker map”, Dynamics of Dissipation, Lecture Notes in Physics, 597, 2002, 395–412  crossref  zmath  adsnasa  isi
    5. Matsui T., Ogata Y., “Variational principle for non–equilibrium steady states of the XX model”, Reviews in Mathematical Physics, 15:8 (2003), 905–923  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Aschbacher W.H., Pillet C.A., “Non–equilibrium steady states of the XY chain”, Journal of Statistical Physics, 112:5–6 (2003), 1153–1175  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Tasaki S., Matsui T., “Fluctuation theorem, nonequilibrium steady states and MacLennan-Zubarev ensembles of a class of large quantum systems”, Fundamental Aspects of Quantum Physics, Qp-Pq Quantum Probability and White Noise Analysis, 17, 2003, 100–119  crossref  mathscinet  zmath  adsnasa  isi
    8. Miyadera T., “Slow decay of dynamical correlation functions for nonequilibrium quantum states”, Journal of Physics A–Mathematical and General, 37:30 (2004), 7447–7454  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Ogata Y., “The stability of the non–equilibrium steady states”, Communications in Mathematical Physics, 245:3 (2004), 577–609  crossref  mathscinet  zmath  adsnasa  isi  scopus
    10. Takahashi J., Tasaki Sh., “Nonlinear Transport and Current Fluctuation in an AB Ring with a Quantum Dot”, J Phys Soc Japan, 74, Suppl. S (2005)  isi
    11. Tasaki Sh., Takahashi J., “Nonequilibrium steady states and MacLennan–Zubarev ensembles in a quantum junction system”, Progress of Theoretical Physics Supplement, 2006, no. 165, 57–77  crossref  zmath  adsnasa  isi  scopus
    12. Takahashi J., Tasaki Sh., “Nonequilibrium steady states and Fano–Kondo resonances in an AB ring with a quantum dot”, Journal of the Physical Society of Japan, 75:9 (2006), 094712  crossref  adsnasa  isi  scopus
    13. Jaksic V., Ogata Y., Pillet C.-A., “The Green–Kubo formula for the spin–fermion system”, Communications in Mathematical Physics, 268:2 (2006), 369–401  crossref  mathscinet  zmath  adsnasa  isi  scopus
    14. Jaksic V., Ogata Y., Pillet C.-A., “Linear response theory for thermally driven quantum open systems”, Journal of Statistical Physics, 123:3 (2006), 547–569  crossref  mathscinet  zmath  adsnasa  isi  scopus
    15. Aschbacher W.H., Barbaroux J.-M., “Out of equilibrium correlations in the XY chain”, Letters in Mathematical Physics, 77:1 (2006), 11–20  crossref  mathscinet  zmath  adsnasa  isi  scopus
    16. Jaksic V., Ogata Y., Pillet C.A., “The Green–Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics”, Communications in Mathematical Physics, 265:3 (2006), 721–738  crossref  mathscinet  zmath  adsnasa  isi  scopus
    17. Tasaki Sh., “Thermodynamics of a class of large quantum systems”, Third 21Coe Symposium: Astrophysics as Interdisciplinary Science, Journal of Physics Conference Series, 31, 2006, 35–42  crossref  isi  scopus  scopus
    18. Aschbacher W.H., Barbaroux J.-M., “Exponential spatial decay of spin–spin correlations in translation invariant quasifree states”, Journal of Mathematical Physics, 48:11 (2007), 113302  crossref  mathscinet  adsnasa  isi  scopus
    19. Aschbacher W., Jaksic V., Pautrat Y., Pillet C.-A., “Transport properties of quasi–free fermions”, Journal of Mathematical Physics, 48:3 (2007), 032101  crossref  mathscinet  adsnasa  isi  scopus
    20. Aschbacher W.H., “Non–zero entropy density in the XY chain out of equilibrium”, Letters in Mathematical Physics, 79:1 (2007), 1–16  crossref  mathscinet  zmath  adsnasa  isi  scopus
    21. Aschbacher W.H., “On the emptiness formation probability in quasi-free states”, Adventures in Mathematical Physics, Contemporary Mathematics Series, 447, 2007, 1–16  crossref  mathscinet  zmath  isi
    22. Ajisaka Sh., Nishimura H., Tasaki Sh., Terasaki I., “Nonequilibrium Peierls Transition”, Progress of Theoretical Physics, 121:6 (2009), 1289–1319  crossref  zmath  adsnasa  isi  scopus
    23. Bruneau L., Pillet C.-A., “Thermal Relaxation of a QED Cavity”, Journal of Statistical Physics, 134:5–6 (2009), 1071–1095  crossref  mathscinet  zmath  adsnasa  isi  scopus
    24. Znidaric M., “Exact solution for a diffusive nonequilibrium steady state of an open quantum chain”, J Stat Mech Theory Exp, 2010, L05002  crossref  mathscinet  isi  scopus  scopus
    25. Aschbacher W.H., “Broken translation invariance in quasifree fermionic correlations out of equilibrium”, J Funct Anal, 260:12 (2011), 3429–3456  crossref  mathscinet  zmath  isi  scopus  scopus
    26. Znidaric M., “Solvable quantum nonequilibrium model exhibiting a phase transition and a matrix product representation”, Phys Rev E, 83:1, Part 1 (2011), 011108  crossref  mathscinet  adsnasa  isi  scopus  scopus
    27. Znidaric M., “Quantum transport in one-dimensional systems via a master equation approach: Numerics and an exact solution”, Pramana-Journal of Physics, 77:5 (2011), 781–791  crossref  mathscinet  adsnasa  isi  scopus  scopus
    28. Jaksic V., Landon B., Pillet C.-A., “Entropic Fluctuations in Xy Chains and Reflectionless Jacobi Matrices”, Ann. Henri Poincare, 14:7 (2013), 1775–1800  crossref  mathscinet  zmath  isi  scopus
    29. Aschbacher W.H., “From the Microscopic to the Van Hove Regime in the Xy Chain Out of Equilibrium”, Rev. Math. Phys., 25:5 (2013), 1330008  crossref  mathscinet  zmath  isi  scopus
    30. Eisler V., Zimboras Z., “Entanglement Negativity in the Harmonic Chain Out of Equilibrium”, New J. Phys., 16 (2014), 123020  crossref  isi  scopus  scopus
    31. Cornean H.D., Moldoveanu V., Pillet C.-A., “on the Steady State Correlation Functions of Open Interacting Systems”, Commun. Math. Phys., 331:1 (2014), 261–295  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    32. Collura M., Martelloni G., “Non-Equilibrium Transport in D-Dimensional Non-Interacting Fermi Gases”, J. Stat. Mech.-Theory Exp., 2014, P08006  crossref  mathscinet  isi  scopus  scopus
    33. Ben Saad R., Pillet C.-A., “a Geometric Approach To the Landauer-Buttiker Formula”, J. Math. Phys., 55:7, SI (2014), 075202  crossref  mathscinet  zmath  isi  scopus  scopus
    34. Bruneau L., Joye A., Merkli M., “Repeated Interactions in Open Quantum Systems”, J. Math. Phys., 55:7, SI (2014), 075204  crossref  mathscinet  zmath  isi  scopus  scopus
    35. Collura M., Karevski D., “Quantum Quench From a Thermal Tensor State: Boundary Effects and Generalized Gibbs Ensemble”, Phys. Rev. B, 89:21 (2014), 214308  crossref  isi  elib  scopus  scopus
    36. Ajisaka Sh., Barra F., Zunkovic B., “Nonequilibrium Quantum Phase Transitions in the Xy Model: Comparison of Unitary Time Evolution and Reduced Density Operator Approaches”, New J. Phys., 16 (2014), 033028  crossref  isi  elib  scopus  scopus
    37. Eisler V., Zimboras Z., “Area-Law Violation For the Mutual Information in a Nonequilibrium Steady State”, Phys. Rev. A, 89:3 (2014), 032321  crossref  isi  elib  scopus  scopus
    38. Doyon B., Lucas A., Schalm K., Bhaseen M.J., “Non-Equilibrium Steady States in the Klein-Gordon Theory”, J. Phys. A-Math. Theor., 48:9 (2015), 095002  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    39. Doyon B., “Lower Bounds For Ballistic Current and Noise in Non-Equilibrium Quantum Steady States”, Nucl. Phys. B, 892 (2015), 190–210  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    40. Genovese G., “on the Dynamics of Xy Spin Chains With Impurities”, Physica A, 434 (2015), 36–51  crossref  adsnasa  isi  scopus  scopus
    41. Hoogeveen M., Doyon B., “Entanglement Negativity and Entropy in Non-Equilibrium Conformal Field Theory”, Nucl. Phys. B, 898 (2015), 78–112  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    42. Spillane M., Herzog Ch.P., “Relativistic hydrodynamics and non-equilibrium steady states”, J. Stat. Mech.-Theory Exp., 2016, 103208  crossref  mathscinet  isi  scopus  scopus
    43. Aschbacher W.H., “On a quantum phase transition in a steady state out of equilibrium”, J. Phys. A-Math. Theor., 49:41 (2016), 415201  crossref  mathscinet  zmath  isi  scopus  scopus
    44. Bernard D., Doyon B., “Conformal field theory out of equilibrium: a review”, J. Stat. Mech.-Theory Exp., 2016, 064005  crossref  mathscinet  isi  scopus  scopus
    45. Bernard D., Doyon B., “A hydrodynamic approach to non-equilibrium conformal field theories”, J. Stat. Mech.-Theory Exp., 2016, 033104  crossref  mathscinet  isi  scopus  scopus
    46. Gransee M., Pinamonti N., Verch R., “Kms-Like Properties of Local Equilibrium States in Quantum Field Theory”, J. Geom. Phys., 117 (2017), 15–35  crossref  mathscinet  zmath  isi  scopus  scopus
    47. Kormos M., Zimboras Z., “Temperature Driven Quenches in the Ising Model: Appearance of Negative Renyi Mutual Information”, J. Phys. A-Math. Theor., 50:26 (2017), 264005  crossref  mathscinet  zmath  isi  scopus  scopus
    48. Langmann E., Lebowitz J.L., Mastropietro V., Moosavi P., “Time Evolution of the Luttinger Model With Nonuniform Temperature Profile”, Phys. Rev. B, 95:23 (2017), 235142  crossref  isi  scopus  scopus
    49. Doyon B., Spohn H., “Dynamics of Hard Rods With Initial Domain Wall State”, J. Stat. Mech.-Theory Exp., 2017, 073210  crossref  mathscinet  isi  scopus  scopus
    50. Cornean H.D., Moldoveanu V., Pillet C.-A., “A Mathematical Account of the Negf Formalism”, Ann. Henri Poincare, 19:2 (2018), 411–442  crossref  mathscinet  zmath  isi  scopus
    51. Bastianello A., Doyon B., Watts G., Yoshimura T., “Generalized Hydrodynamics of Classical Integrable Field Theory: the Sinh-Gordon Model”, SciPost Phys., 4:6 (2018), 045  crossref  isi
    52. Gawedzki K., Langmann E., Moosavi P., “Finite-Time Universality in Nonequilibrium CFT”, J. Stat. Phys., 172:2, SI (2018), 353–378  crossref  mathscinet  isi  scopus
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:328
    Full text:127
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020