Trudy Matematicheskogo Instituta imeni V.A. Steklova
General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Trudy Mat. Inst. Steklova:

Personal entry:
Save password
Forgotten password?

Trudy Mat. Inst. Steklova, 2000, Volume 231, Pages 96–118 (Mi tm513)  

This article is cited in 34 scientific papers (total in 34 papers)

Certain Properties of Skew Products over a Horseshoe and a Solenoid

A. S. Gorodetski, Yu. S. Ilyashenko

Abstract: The skew products are investigated over the Bernoulli shift and the Smale–Williams solenoid with a fiber $S^1$. It is assumed that the mapping in the fiber Hölder continuously depends on a point in the base (it is these skew products that arise in the study of partially hyperbolic sets). It is proved that, in the space of skew products with this property, there exists an open domain such that the mappings from this domain have dense sets of periodic orbits that are attracting and repelling along the fiber, as well as the dense orbits with the zero (along the fiber) Lyapunov exponent.

Full text: PDF file (322 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2000, 231, 90–112

Bibliographic databases:
UDC: 517.938
Received in February 2000

Citation: A. S. Gorodetski, Yu. S. Ilyashenko, “Certain Properties of Skew Products over a Horseshoe and a Solenoid”, Dynamical systems, automata, and infinite groups, Collected papers, Trudy Mat. Inst. Steklova, 231, Nauka, MAIK Nauka/Inteperiodika, M., 2000, 96–118; Proc. Steklov Inst. Math., 231 (2000), 90–112

Citation in format AMSBIB
\by A.~S.~Gorodetski, Yu.~S.~Ilyashenko
\paper Certain Properties of Skew Products over a~Horseshoe and a~Solenoid
\inbook Dynamical systems, automata, and infinite groups
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2000
\vol 231
\pages 96--118
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\jour Proc. Steklov Inst. Math.
\yr 2000
\vol 231
\pages 90--112

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Kleptsyn, M. B. Nalsky, “Contraction of Orbits in Random Dynamical Systems on the Circle”, Funct. Anal. Appl., 38:4 (2004), 267–282  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Ilyashenko Y., “Selected topics in differential equations with real and complex time”, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, NATO Science Series, Series II: Mathematics, Physics and Chemistry, 137, 2004, 317–354  crossref  mathscinet  isi
    3. D. I. Dolgopyat, “Livsiĉ theory for compact group extensions of hyperbolic systems”, Mosc. Math. J., 5:1 (2005), 55–67  mathnet  crossref  mathscinet  zmath
    4. A. S. Gorodetski, Yu. S. Ilyashenko, V. A. Kleptsyn, M. B. Nalsky, “Nonremovable Zero Lyapunov Exponents”, Funct. Anal. Appl., 39:1 (2005), 21–30  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Gonchenko S.V., Ovsyannikov I.I., Simo C., Turaev D., “Three–dimensional Henon–like maps and wild Lorenz–like attractors”, International Journal of Bifurcation and Chaos, 15:11 (2005), 3493–3508  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. A. S. Gorodetski, “The regularity of central leaves of partially hyperbolic sets and its applications”, Izv. Math., 70:6 (2006), 1093–1116  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. Homburg A.J., Lamb J.S.W., “Symmetric homoclinic tangles in reversible systems”, Ergodic Theory and Dynamical Systems, 26:6 (2006), 1769–1789  crossref  mathscinet  zmath  isi  scopus  scopus
    8. V. A. Kleptsyn, M. B. Nalsky, “Stability of Existence of Nonhyperbolic Measures for $C^1$-Diffeomorphisms”, Funct. Anal. Appl., 41:4 (2007), 271–283  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Zmarrou H., Homburg A.J., “Dynamics and bifurcations of random circle diffeomorphism”, Discrete and Continuous Dynamical Systems–Series B, 10:2–3 (2008), 719–731  mathscinet  zmath  isi
    10. Diaz L.J., Gorodetski A., “Non–hyperbolic ergodic measures for non–hyperbolic homoclinic classes”, Ergodic Theory and Dynamical Systems, 29:5 (2009), 1479–1513  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Ilyashenko Yu., Negut A., “Invisible parts of attractors”, Nonlinearity, 23:5 (2010), 1199–1219  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    12. Ghane F.H., Homburg A.J., Sarizadeh A., “C–1 Robustly Minimal Iterated Function Systems”, Stochastics and Dynamics, 10:1 (2010), 155–160  crossref  mathscinet  zmath  isi  scopus  scopus
    13. A. V. Osipov, “Nondensity of the orbital shadowing property in $C^1$-topology”, St. Petersburg Math. J., 22:2 (2011), 267–292  mathnet  crossref  mathscinet  zmath  isi
    14. Ghane F.H., Saleh M., “C-1-Robustly Minimal Ifs with Three Generators”, Internat J Bifur Chaos Appl Sci Engrg, 20:10 (2010), 3373–3377  crossref  mathscinet  zmath  isi  scopus  scopus
    15. Pilyugin S.Yu., “Theory of pseudo-orbit shadowing in dynamical systems”, Differ Equ, 47:13 (2011), 1929–1938  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    16. Ilyashenko Yu., “Thick attractors of boundary preserving diffeomorphisms”, Indag Math (N S ), 22:3–4 (2011), 257–314  crossref  mathscinet  zmath  isi  scopus  scopus
    17. V. A. Kleptsyn, P. S. Saltykov, “On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps”, Trans. Moscow Math. Soc., 72 (2011), 193–217  mathnet  crossref  zmath  elib
    18. Kryzhevich S., Wiercigroch M., “Topology of Vibro-Impact Systems in the Neighborhood of Grazing”, Physica D, 241:22 (2012), 1919–1931  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    19. Ghane F.H., Nazari M., Saleh M., Shabani Z., “Attractors and their Invisible Parts for Skew Products with High Dimensional Fiber”, Int. J. Bifurcation Chaos, 22:8 (2012), 1250182  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    20. Ilyashenko Yu., Negut A., “Holder Properties of Perturbed Skew Products and Fubini Regained”, Nonlinearity, 25:8 (2012), 2377–2399  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    21. Diaz L.J., Gelfert K., “Porcupine-Like Horseshoes: Transitivity, Lyapunov Spectrum, and Phase Transitions”, Fundam. Math., 216:1 (2012), 55–100  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    22. Homburg A.J., “Circle Diffeomorphisms Forced by Expanding Circle Maps”, Ergod. Theory Dyn. Syst., 32:Part 6 (2012), 2011–2024  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    23. Gonchenko S.V. Gonchenko A.S. Ovsyannikov I.I. Turaev D.V., “Examples of Lorenz-Like Attractors in Henon-Like Maps”, Math. Model. Nat. Phenom., 8:5 (2013), 48–70  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    24. Tatiana Golenishcheva-Kutuzova, Anton Gorodetski, Victor Kleptsyn, Denis Volk, “Translation numbers define generators of $F_k^+\to\mathrm{Homeo}_+(\mathbb S^1)$”, Mosc. Math. J., 14:2 (2014), 291–308  mathnet  mathscinet
    25. Homburg A.J., Nassiri M., “Robust Minimality of Iterated Function Systems With Two Generators”, Ergod. Theory Dyn. Syst., 34:6 (2014), 1914–1929  crossref  mathscinet  zmath  isi  scopus  scopus
    26. J. Math. Sci. (N. Y.), 209:6 (2015), 979–987  mathnet  crossref
    27. Ilyashenko Yu., Romaskevich O., “Sternberg Linearization Theorem for Skew Products”, J. Dyn. Control Syst., 22:3 (2016), 595–614  crossref  mathscinet  zmath  isi  elib  scopus
    28. L. S. Efremova, “Dynamics of skew products of interval maps”, Russian Math. Surveys, 72:1 (2017), 101–178  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    29. Das S., Yorke J.A., “Multichaos From Quasiperiodicity”, SIAM J. Appl. Dyn. Syst., 16:4 (2017), 2196–2212  crossref  mathscinet  zmath  isi  scopus
    30. Barrientos P.G., Fakhari A., Malicet D., Sarizadeh A., “Expanding Actions: Minimality and Ergodicity”, Stoch. Dyn., 17:4 (2017), 1750031  crossref  mathscinet  zmath  isi  scopus  scopus
    31. Asaoka M., Shinohara K., Turaev D., “Degenerate Behavior in Non-Hyperbolic Semigroup Actions on the Interval: Fast Growth of Periodic Points and Universal Dynamics”, Math. Ann., 368:3-4 (2017), 1277–1309  crossref  mathscinet  zmath  isi  scopus  scopus
    32. Ilyashenko Yu., Shilin I., “Attractors and Skew Products”, Modern Theory of Dynamical Systems: a Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 692, eds. Katok A., Pesin Y., Hertz F., Amer Mathematical Soc, 2017, 155–175  crossref  mathscinet  zmath  isi  scopus  scopus
    33. Stavros Anastassiou, Anastasios Bountis, Arnd Bäcker, “Recent Results on the Dynamics of Higher-dimensional Hénon Maps”, Regul. Chaotic Dyn., 23:2 (2018), 161–177  mathnet  crossref
    34. Diaz L.J. Gelfert K. Rams M., “Entropy Spectrum of Lyapunov Exponents For Nonhyperbolic Step Skew-Products and Elliptic Cocycles”, Commun. Math. Phys., 367:2 (2019), 351–416  crossref  mathscinet  zmath  isi  scopus
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:472
    Full text:154
    First page:2

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021