RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 1999, Volume 227, Pages 43–55 (Mi tm544)  

On the Nikol'skii Classes of Polyharmonic Functions

K. O. Besov


Abstract: This paper is devoted to the study of the properties of polyharmonic functions defined on the unit ball $D^m$ of the Euclidean space $\mathbb R^m$, $D^m = \{x\in\mathbb R^m\mid |x|<1\}$. With the help of the well-known Almansi decomposition, the polyharmonic function is represented as a sum of components, each of which has a simple form. The main idea, developed in [1–3], is that, under a suitable choice of components, the behavior of these components near the boundary of the ball $D^m$ is no worse than that of the polyharmonic function itself. Here, in view of the smoothness at internal points, the boundary behavior of a polyharmonic function is naturally characterized by its membership in a certain functional class on $D^m$.

Full text: PDF file (224 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 1999, 227, 37–49

Bibliographic databases:
UDC: 517
Received in October 1998

Citation: K. O. Besov, “On the Nikol'skii Classes of Polyharmonic Functions”, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Collection of papers, Tr. Mat. Inst. Steklova, 227, Nauka, MAIK Nauka/Inteperiodika, M., 1999, 43–55; Proc. Steklov Inst. Math., 227 (1999), 37–49

Citation in format AMSBIB
\Bibitem{Bes99}
\by K.~O.~Besov
\paper On the Nikol'skii Classes of Polyharmonic Functions
\inbook Investigations in the theory of differentiable functions of many variables and its applications. Part~18
\bookinfo Collection of papers
\serial Tr. Mat. Inst. Steklova
\yr 1999
\vol 227
\pages 43--55
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm544}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1784304}
\zmath{https://zbmath.org/?q=an:0978.46017}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 227
\pages 37--49


Linking options:
  • http://mi.mathnet.ru/eng/tm544
  • http://mi.mathnet.ru/eng/tm/v227/p43

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:403
    Full text:77
    References:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020