RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 1999, Volume 225, Pages 339–361 (Mi tm731)  

This article is cited in 9 scientific papers (total in 9 papers)

The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres

I. A. Taimanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Full text: PDF file (2365 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 1999, 225, 322–343

Bibliographic databases:

UDC: 517.9
Received in December 1998

Citation: I. A. Taimanov, “The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres”, Solitons, geometry, and topology: on the crossroads, Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov, Tr. Mat. Inst. Steklova, 225, Nauka, MAIK Nauka/Inteperiodika, M., 1999, 339–361; Proc. Steklov Inst. Math., 225 (1999), 322–343

Citation in format AMSBIB
\Bibitem{Tai99}
\by I.~A.~Taimanov
\paper The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres
\inbook Solitons, geometry, and topology: on the crossroads
\bookinfo Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov
\serial Tr. Mat. Inst. Steklova
\yr 1999
\vol 225
\pages 339--361
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm731}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1725951}
\zmath{https://zbmath.org/?q=an:0985.35075}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 225
\pages 322--343


Linking options:
  • http://mi.mathnet.ru/eng/tm731
  • http://mi.mathnet.ru/eng/tm/v225/p339

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Helein F., Romon P., “Weierstrass representation of Lagrangian surfaces in four–dimensional space using spinors and quaternions”, Commentarii Mathematici Helvetici, 75:4 (2000), 668–680  crossref  mathscinet  zmath  isi
    2. Ferus D., Leschke K., Pedit F., Pinkall U., “Quaternionic holomorphic geometry: Plucker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2–tori”, Inventiones Mathematicae, 146:3 (2001), 507–593  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. I. A. Taimanov, “Dirac Operators and Conformal Invariants of Tori in 3-Space”, Proc. Steklov Inst. Math., 244 (2004), 233–263  mathnet  mathscinet  zmath
    4. I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces”, Russian Math. Surveys, 61:1 (2006), 79–159  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Bohle Ch., Peters G.P., “Bryant surfaces with smooth ends”, Communications in Analysis and Geometry, 17:4 (2009), 587–619  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Bohle Ch., Peters G.P., “Soliton Spheres”, Trans Amer Math Soc, 363:10 (2011), 5419–5463  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Moriya K., “A Condition for a Closed One-Form to Be Exact”, Adv. Appl. Clifford Algebr., 22:2 (2012), 433–448  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    8. I. A. Taimanov, “The Moutard Transformation of Two-Dimensional Dirac Operators and Möbius Geometry”, Math. Notes, 97:1 (2015), 124–135  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Theoret. and Math. Phys., 182:2 (2015), 173–181  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:321
    Full text:118
    References:60

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019