RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2008, Volume 261, Pages 97–100 (Mi tm742)  

Stabilization of Solution to the Cauchy Problem for a Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function

V. N. Denisov

M. V. Lomonosov Moscow State University

Abstract: For the coefficients of lower order terms of a second-order parabolic equation, we obtain sharp sufficient conditions under which the solution of the Cauchy problem stabilizes to zero uniformly in $x$ on each compact set $K$ in $\mathbb R^N$ for any exponentially growing initial function.

Full text: PDF file (125 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2008, 261, 94–97

Bibliographic databases:

UDC: 517.956.4
Received in April 2007

Citation: V. N. Denisov, “Stabilization of Solution to the Cauchy Problem for a Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function”, Differential equations and dynamical systems, Collected papers, Tr. Mat. Inst. Steklova, 261, MAIK Nauka/Interperiodica, Moscow, 2008, 97–100; Proc. Steklov Inst. Math., 261 (2008), 94–97

Citation in format AMSBIB
\Bibitem{Den08}
\by V.~N.~Denisov
\paper Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2008
\vol 261
\pages 97--100
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm742}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2489699}
\zmath{https://zbmath.org/?q=an:1235.35036}
\elib{http://elibrary.ru/item.asp?id=11032689}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 261
\pages 94--97
\crossref{https://doi.org/10.1134/S0081543808020089}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262227900008}
\elib{http://elibrary.ru/item.asp?id=13594910}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849108014}


Linking options:
  • http://mi.mathnet.ru/eng/tm742
  • http://mi.mathnet.ru/eng/tm/v261/p97

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:218
    Full text:34
    References:37
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019