RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2008, Volume 263, Pages 251–271 (Mi tm795)  

This article is cited in 5 scientific papers (total in 5 papers)

Minimal Peano Curve

E. V. Shchepina, K. E. Baumanb

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A Peano curve $p(x)$ with maximum square-to-linear ratio $\frac{|p(x)-p(y)|^2}{|x-y|}$ equal to $5\frac23$ is constructed; this ratio is smaller than that of the classical Peano–Hilbert curve, whose maximum square-to-linear ratio is 6. The curve constructed is of fractal genus 9 (i.e., it is decomposed into nine fragments that are similar to the whole curve) and of diagonal type (i.e., it intersects a square starting from one corner and ending at the opposite corner). It is proved that this curve is a unique (up to isometry) regular diagonal Peano curve of fractal genus 9 whose maximum square-to-linear ratio is less than 6. A theory is developed that allows one to find the maximum square-to-linear ratio of a regular Peano curve on the basis of computer calculations.

Full text: PDF file (269 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2008, 263, 236–256

Bibliographic databases:

UDC: 519.6
Received in April 2008

Citation: E. V. Shchepin, K. E. Bauman, “Minimal Peano Curve”, Geometry, topology, and mathematical physics. I, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday, Tr. Mat. Inst. Steklova, 263, MAIK Nauka/Interperiodica, Moscow, 2008, 251–271; Proc. Steklov Inst. Math., 263 (2008), 236–256

Citation in format AMSBIB
\Bibitem{ShcBau08}
\by E.~V.~Shchepin, K.~E.~Bauman
\paper Minimal Peano Curve
\inbook Geometry, topology, and mathematical physics.~I
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2008
\vol 263
\pages 251--271
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm795}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2599383}
\zmath{https://zbmath.org/?q=an:1201.37061}
\elib{http://elibrary.ru/item.asp?id=11640646}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 263
\pages 236--256
\crossref{https://doi.org/10.1134/S0081543808040172}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000263177700016}
\elib{http://elibrary.ru/item.asp?id=13584657}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59849090436}


Linking options:
  • http://mi.mathnet.ru/eng/tm795
  • http://mi.mathnet.ru/eng/tm/v263/p251

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. E. Bauman, “One-side Peano curves of fractal genus $9$”, Proc. Steklov Inst. Math., 275 (2011), 47–59  mathnet  crossref  mathscinet  isi  elib  elib
    2. K. E. Bauman, “Lower estimate of the square-to-linear ratio for regular Peano curves”, Discrete Math. Appl., 24:3 (2014), 123–128  mathnet  crossref  crossref  mathscinet  elib  elib
    3. D. K. Shalyga, “O tochnom vychislenii kubo-lineinogo otnosheniya krivykh Peano”, Preprinty IPM im. M. V. Keldysha, 2014, 088, 13 pp.  mathnet
    4. E. V. Shchepin, “Attainment of Maximum Cube-to-Linear Ratio for Three-Dimensional Peano Curves”, Math. Notes, 98:6 (2015), 971–976  mathnet  crossref  crossref  mathscinet  isi  elib
    5. A. A. Korneev, E. V. Shchepin, “$L_\infty $-locality of three-dimensional Peano curves”, Proc. Steklov Inst. Math., 302 (2018), 217–249  mathnet  crossref  crossref  isi  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:767
    Full text:68
    References:74
    First page:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020