RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2009, Volume 264, Pages 137–151 (Mi tm814)  

This article is cited in 5 scientific papers (total in 5 papers)

Multiple Fibers of del Pezzo Fibrations

S. Moria, Yu. G. Prokhorovb

a Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
b Department of Algebra, Faculty of Mathematics, Moscow State University, Moscow, Russia

Abstract: We prove that a terminal three-dimensional del Pezzo fibration has no fibers of multiplicity $>6$. We also obtain a rough classification of possible configurations of singular points on multiple fibers and give some examples.

Full text: PDF file (272 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 264, 131–145

Bibliographic databases:

UDC: 512.7
Received in June 2008
Language: English

Citation: S. Mori, Yu. G. Prokhorov, “Multiple Fibers of del Pezzo Fibrations”, Multidimensional algebraic geometry, Collected papers. Dedicated to the Memory of Vasilii Alekseevich Iskovskikh, Corresponding Member of the Russian Academy of Sciences, Tr. Mat. Inst. Steklova, 264, MAIK Nauka/Interperiodica, Moscow, 2009, 137–151; Proc. Steklov Inst. Math., 264 (2009), 131–145

Citation in format AMSBIB
\Bibitem{MorPro09}
\by S.~Mori, Yu.~G.~Prokhorov
\paper Multiple Fibers of del Pezzo Fibrations
\inbook Multidimensional algebraic geometry
\bookinfo Collected papers. Dedicated to the Memory of Vasilii Alekseevich Iskovskikh, Corresponding Member of the Russian Academy of Sciences
\serial Tr. Mat. Inst. Steklova
\yr 2009
\vol 264
\pages 137--151
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm814}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2590844}
\elib{http://elibrary.ru/item.asp?id=11807026}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 264
\pages 131--145
\crossref{https://doi.org/10.1134/S0081543809010167}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000265834800015}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65749099566}


Linking options:
  • http://mi.mathnet.ru/eng/tm814
  • http://mi.mathnet.ru/eng/tm/v264/p137

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Prokhorov Yu., “$\mathbb Q$-Fano threefolds of large Fano index, I”, Doc. Math., 15 (2010), 843–872  mathscinet  zmath  isi
    2. Prokhorov Yu., “Simple Finite Subgroups of the Cremona Group of Rank 3”, J. Algebr. Geom., 21:3 (2012), 563–600  crossref  mathscinet  zmath  isi  elib  scopus
    3. Cheltsov I., Shramov C., “Five Embeddings of One Simple Group”, Trans. Am. Math. Soc., 366:3 (2014), 1289–1331  crossref  mathscinet  zmath  isi  elib  scopus
    4. Birkar C., “Singularities on the base of a Fano type fibration”, J. Reine Angew. Math., 715 (2016), 125–142  crossref  mathscinet  zmath  isi  elib  scopus
    5. Yuri Prokhorov, Constantin Shramov, “Jordan constant for Cremona group of rank $3$”, Mosc. Math. J., 17:3 (2017), 457–509  mathnet  mathscinet
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:215
    Full text:6
    References:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019