RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2009, Volume 265, Pages 7–18 (Mi tm818)  

This article is cited in 14 scientific papers (total in 14 papers)

$p$-Adic Nonorthogonal Wavelet Bases

S. Albeverioab, S. Evdokimovc, M. Skopinad

a Institut für Angewandte Mathematik, Universität Bonn, Bonn, Germany
b Interdisziplinäres Zentrum für Komplexe Systeme, Universität Bonn, Bonn, Germany
c St. Petersburg Department of the Steklov Institute of Mathematics, Russian Academy of Sciences, St.-Petersburg, Russia
d Faculty of Applied Mathematics and Control Processes, St.-Petersburg State University, St.-Petersburg, Russia

Abstract: A method for constructing MRA-based $p$-adic wavelet systems that form Riesz bases in $L^2(\mathbb Q_p)$ is developed. The method is implemented for an infinite family of MRAs.

Full text: PDF file (232 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 265, 1–12

Bibliographic databases:

UDC: 517.5
Received in October 2008
Language:

Citation: S. Albeverio, S. Evdokimov, M. Skopina, “$p$-Adic Nonorthogonal Wavelet Bases”, Selected topics of mathematical physics and $p$-adic analysis, Collected papers, Tr. Mat. Inst. Steklova, 265, MAIK Nauka/Interperiodica, Moscow, 2009, 7–18; Proc. Steklov Inst. Math., 265 (2009), 1–12

Citation in format AMSBIB
\Bibitem{AlbEvdSko09}
\by S.~Albeverio, S.~Evdokimov, M.~Skopina
\paper $p$-Adic Nonorthogonal Wavelet Bases
\inbook Selected topics of mathematical physics and $p$-adic analysis
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2009
\vol 265
\pages 7--18
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm818}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2599539}
\zmath{https://zbmath.org/?q=an:1178.42035}
\elib{http://elibrary.ru/item.asp?id=12601445}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 265
\pages 1--12
\crossref{https://doi.org/10.1134/S0081543809020011}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000268514300001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350054431}


Linking options:
  • http://mi.mathnet.ru/eng/tm818
  • http://mi.mathnet.ru/eng/tm/v265/p7

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. F. Lukomskii, “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sb. Math., 201:5 (2010), 669–691  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Lukomskii S.F., “Haar system on a product of zero-dimensional compact groups”, Cent. Eur. J. Math., 9:3 (2011), 627–639  crossref  mathscinet  zmath  isi  elib  scopus
    3. S. F. Lukomskii, “Neortogonalnyi kratnomasshtabnyi analiz na nul-mernykh lokalno kompaktnykh gruppakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:3(1) (2011), 25–32  mathnet  elib
    4. S. F. Lukomskii, “Haar System on the Product of Groups of $p$-Adic Integers”, Math. Notes, 90:4 (2011), 517–532  mathnet  crossref  crossref  mathscinet  isi
    5. Lukomskii S.F., “Multiresolution analysis on product of zero-dimensional Abelian groups”, J. Math. Anal. Appl., 385:2 (2012), 1162–1178  crossref  mathscinet  zmath  isi  elib  scopus
    6. Khrennikov A.Y. Kosyak A.V. Shelkovich V.M., “Wavelet Analysis on Adeles and Pseudo-Differential Operators”, J. Fourier Anal. Appl., 18:6 (2012), 1215–1264  crossref  mathscinet  zmath  isi  elib  scopus
    7. S. V. Kozyrev, A. Yu. Khrennikov, V. M. Shelkovich, “$p$-Adic wavelets and their applications”, Proc. Steklov Inst. Math., 285 (2014), 157–196  mathnet  crossref  crossref  isi  elib  elib
    8. Lukomskii S.F., “Riesz Multiresolution Analysis on Vilenkin Groups”, Dokl. Math., 90:1 (2014), 412–415  crossref  mathscinet  zmath  isi  elib  scopus
    9. S. F. Lukomskii, “Riesz multiresolution analysis on zero-dimensional groups”, Izv. Math., 79:1 (2015), 145–176  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. Evdokimov S., Skopina M., “on Orthogonal P-Adic Wavelet Bases”, J. Math. Anal. Appl., 424:2 (2015), 952–965  crossref  mathscinet  zmath  isi  elib  scopus
    11. Evdokimov S., “On non-compactly supported p-adic wavelets”, J. Math. Anal. Appl., 443:2 (2016), 1260–1266  crossref  mathscinet  zmath  isi  elib  scopus
    12. Jahan Q., “Characterization of Low-pass Filters on Local Fields of Positive Characteristic”, Can. Math. Bul.-Bul. Can. Math., 59:3 (2016), 528–541  crossref  mathscinet  zmath  isi  scopus
    13. E. Dzh. King, M. A. Skopina, “O biortogonalnykh $p$-adicheskikh bazisakh vspleskov”, Voprosy teorii predstavlenii algebr i grupp. 31, Zap. nauchn. sem. POMI, 455, POMI, SPb., 2017, 67–83  mathnet
    14. Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., Zelenov E.I., “P-Adic Mathematical Physics: the First 30 Years”, P-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121  crossref  mathscinet  zmath  isi  scopus
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:331
    Full text:34
    References:43

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020