RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2006, Volume 253, Pages 46–60 (Mi tm82)  

This article is cited in 5 scientific papers (total in 5 papers)

Remarks on the Local Version of the Inverse Scattering Method

A. V. Domrin

M. V. Lomonosov Moscow State University

Abstract: It is very likely that all local holomorphic solutions of integrable $(1+1)$-dimensional parabolic-type evolution equations can be obtained from the zero solution by formal gauge transformations that belong (as formal power series) to appropriate Gevrey classes. We describe in detail the construction of solutions by means of convergent gauge transformations and prove an assertion converse to the above conjecture; namely, we suggest a simple necessary condition for the existence of a local holomorphic solution to the Cauchy problem for the evolution equations under consideration in terms of scattering data of initial conditions.

Full text: PDF file (254 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2006, 253, 37–50

Bibliographic databases:

UDC: 517.958
Received in October 2005

Citation: A. V. Domrin, “Remarks on the Local Version of the Inverse Scattering Method”, Complex analysis and applications, Collected papers, Tr. Mat. Inst. Steklova, 253, Nauka, MAIK Nauka/Inteperiodika, M., 2006, 46–60; Proc. Steklov Inst. Math., 253 (2006), 37–50

Citation in format AMSBIB
\Bibitem{Dom06}
\by A.~V.~Domrin
\paper Remarks on the Local Version of the Inverse Scattering Method
\inbook Complex analysis and applications
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2006
\vol 253
\pages 46--60
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm82}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2338686}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 253
\pages 37--50
\crossref{https://doi.org/10.1134/S0081543806020040}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748328040}


Linking options:
  • http://mi.mathnet.ru/eng/tm82
  • http://mi.mathnet.ru/eng/tm/v253/p46

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Domrin, A. V. Domrina, “On the divergence of the Kontsevich–Witten series”, Russian Math. Surveys, 63:4 (2008), 773–775  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. A. V. Komlov, “Estimates of the Gevrey classes of scattering data for polynomial potentials”, Russian Math. Surveys, 63:4 (2008), 788–789  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. A. V. Domrin, “Meromorphic extension of solutions of soliton equations”, Izv. Math., 74:3 (2010), 461–480  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. A. V. Domrin, “On holomorphic solutions of equations of Korteweg–de Vries type”, Trans. Moscow Math. Soc., 73 (2012), 193–206  mathnet  crossref  mathscinet  zmath  elib
    5. A. V. Domrin, “Real-analytic solutions of the nonlinear Schrödinger equation”, Trans. Moscow Math. Soc., 75 (2014), 173–183  mathnet  crossref  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:261
    Full text:66
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018