Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2021, Volume 208, Number 2, Pages 245–260 (Mi tmf10079)  

Integrable extensions of classical elliptic integrable systems

M. A. Olshanetskyabc

a Alikhanov Institute for Theoretical and Experimental Physics of National Research Center "Kurchatov Institute", Moscow, Russia
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
c Moscow Institute for Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia

Abstract: In this article we consider two particular examples of general construction proposed in arXiv:2012.15529. We consider the integrable extensions of the classical elliptic Calogero-Moser model of N particles with spin and the integrable Euler-Arnold top related to the group SL(N,C). The extended systems has additional N-1 degrees of freedom and can be described in terms of the Darboux variables.

Keywords: Hitchin systems, Calogero–Moser model, Euler–Arnold top.

DOI: https://doi.org/10.4213/tmf10079

Full text: PDF file (513 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2021, 208:2, 1061–1074

Bibliographic databases:

Received: 22.02.2021
Revised: 27.02.2021

Citation: M. A. Olshanetsky, “Integrable extensions of classical elliptic integrable systems”, TMF, 208:2 (2021), 245–260; Theoret. and Math. Phys., 208:2 (2021), 1061–1074

Citation in format AMSBIB
\Bibitem{Ols21}
\by M.~A.~Olshanetsky
\paper Integrable extensions of classical elliptic integrable systems
\jour TMF
\yr 2021
\vol 208
\issue 2
\pages 245--260
\mathnet{http://mi.mathnet.ru/tmf10079}
\crossref{https://doi.org/10.4213/tmf10079}
\elib{https://elibrary.ru/item.asp?id=47028256}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 208
\issue 2
\pages 1061--1074
\crossref{https://doi.org/10.1134/S0040577921080067}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000686798400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113168423}


Linking options:
  • http://mi.mathnet.ru/eng/tmf10079
  • https://doi.org/10.4213/tmf10079
  • http://mi.mathnet.ru/eng/tmf/v208/i2/p245

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:66
    References:2
    First page:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022