RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1997, Volume 111, Number 3, Pages 345–355 (Mi tmf1013)  

This article is cited in 9 scientific papers (total in 9 papers)

Equilibrium configuration of black holes and inverse scattering method

G. G. Varzugin

V. A. Fock Institute of Physics, Saint-Petersburg State University

Abstract: The inverse scattering method is applied for investigation of equilibrium configuration of black holes. Basing on the study of the boundary problem corresponding to this configuration it is shown that any axially symmetric stationary solution of Einstein equations with disconnected event horison must be contained in the class of Belinskiy–Zaharov solutions. The relations between angular momenta and angular velocities of the black holes are derived.

DOI: https://doi.org/10.4213/tmf1013

Full text: PDF file (211 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1997, 111:3, 667–675

Bibliographic databases:

Received: 15.01.1997

Citation: G. G. Varzugin, “Equilibrium configuration of black holes and inverse scattering method”, TMF, 111:3 (1997), 345–355; Theoret. and Math. Phys., 111:3 (1997), 667–675

Citation in format AMSBIB
\Bibitem{Var97}
\by G.~G.~Varzugin
\paper Equilibrium configuration of black holes and inverse scattering method
\jour TMF
\yr 1997
\vol 111
\issue 3
\pages 345--355
\mathnet{http://mi.mathnet.ru/tmf1013}
\crossref{https://doi.org/10.4213/tmf1013}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1472213}
\zmath{https://zbmath.org/?q=an:0978.83506}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 3
\pages 667--675
\crossref{https://doi.org/10.1007/BF02634055}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997YC44100003}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1013
  • https://doi.org/10.4213/tmf1013
  • http://mi.mathnet.ru/eng/tmf/v111/i3/p345

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. Sh. Gutshabash, V. D. Lipovskii, S. S. Nikulichev, “Nonlinear $\sigma$-model in a curved space, gauge equivalence, and exact solutions of $(2+0)$-dimensional integrable equations”, Theoret. and Math. Phys., 115:3 (1998), 619–638  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Varzugin, GG, “Charged rotating black holes in equilibrium”, Classical and Quantum Gravity, 19:17 (2002), 4553  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    3. Manko, VS, “Double-Reissner-Nordstrom solution and the interaction force between two spherical charged masses in general relativity”, Physical Review D, 76:12 (2007), 124032  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus  scopus
    4. Chrusciel P.T., Eckstein M., Luc Nguyen, Szybka S.J., “Existence of singularities in two-Kerr black holes”, Classical Quantum Gravity, 28:24 (2011), 245017  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. Neugebauer G., Hennig J., “Stationary two-black-hole configurations: A non-existence proof”, J Geom Phys, 62:3 (2012), 613–630  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    6. Meinel R., “Constructive proof of the Kerr-Newman black hole uniqueness including the extreme case”, Classical Quantum Gravity, 29:3 (2012), 035004  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    7. Clement M.E.G., “Bounds on the Force Between Black Holes”, Class. Quantum Gravity, 29:16 (2012), 165008  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    8. Chrusciel P.T., Costa J.L., Heusler M., “Stationary Black Holes: Uniqueness and Beyond”, Living Rev. Relativ., 15 (2012), 7  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    9. Beyer F., Henning J., “An Exact Smooth Gowdy-Symmetric Generalized Taub-NUT Solution”, Class. Quantum Gravity, 31:9 (2014)  crossref  mathscinet  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:283
    Full text:109
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020