|
This article is cited in 2 scientific papers (total in 2 papers)
Bogoliubov group variables for the relativistically invariant systems
O. A. Khrustalev, M. V. Chichikina M. V. Lomonosov Moscow State University, Faculty of Physics
Abstract:
Bogoliubov group variables for the relativistically invariant systems are considered [1]. Reduction of states number is performed. Expressions for the integrals of motion in the zero-point order with respect to inverted powers of the coupling constant are given as derivatives with respect to group variables.
DOI:
https://doi.org/10.4213/tmf1018
Full text:
PDF file (192 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1997, 111:3, 723–730
Bibliographic databases:
Received: 11.12.1996
Citation:
O. A. Khrustalev, M. V. Chichikina, “Bogoliubov group variables for the relativistically invariant systems”, TMF, 111:3 (1997), 413–422; Theoret. and Math. Phys., 111:3 (1997), 723–730
Citation in format AMSBIB
\Bibitem{KhrChi97}
\by O.~A.~Khrustalev, M.~V.~Chichikina
\paper Bogoliubov group variables for the relativistically invariant systems
\jour TMF
\yr 1997
\vol 111
\issue 3
\pages 413--422
\mathnet{http://mi.mathnet.ru/tmf1018}
\crossref{https://doi.org/10.4213/tmf1018}
\zmath{https://zbmath.org/?q=an:0978.81517}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 3
\pages 723--730
\crossref{https://doi.org/10.1007/BF02634060}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997YC44100008}
Linking options:
http://mi.mathnet.ru/eng/tmf1018https://doi.org/10.4213/tmf1018 http://mi.mathnet.ru/eng/tmf/v111/i3/p413
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
E. Yu. Spirina, O. A. Khrustalev, M. V. Chichikina, “Nonstationary polaron”, Theoret. and Math. Phys., 122:3 (2000), 347–354
-
Khrustalev, O, “Covariant collective coordinates method in path integral formalism: Application to quantum gravity on classical background”, Nuclear Physics B-Proceedings Supplements, 104 (2002), 217
|
Number of views: |
This page: | 220 | Full text: | 116 | References: | 46 | First page: | 1 |
|