RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1997, Volume 111, Number 3, Pages 483–496 (Mi tmf1024)  

This article is cited in 3 scientific papers (total in 3 papers)

Statistical theory of rapid particles channelling based on the local Boltzmann equation. Correlation matrix of interactions and diffusion function of particles

Yu. A. Kashleva, N. M. Sadykovb

a A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
b Aktau State University

Abstract: Based on Bogoliubov's chain of equations the kinetic theory of rapid particles in crystal is developed. For one-particle distribution function under iteraction of particles with thermal oscillations and valent electrons a local kinetic equation is obtained. With the account of the explicit form of the collision term in the kinetic equation the basic characteristic of a subsystem of particles in the dechannelling problem – diffusion function $B(\varepsilon_\perp)$ in the space of transversal energies is found. It is shown that the functional dependence provided by $B(\varepsilon_\perp)$ is different in three regions of $\varepsilon_\perp$, corresponding to channelling, quasichannelling and chaotic motion of particles. It is also shown that the diffusion function has a break when the transversal energy equals to the top of the potential barrier of a channel.

DOI: https://doi.org/10.4213/tmf1024

Full text: PDF file (281 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1997, 111:3, 779–790

Bibliographic databases:

Received: 28.11.1996

Citation: Yu. A. Kashlev, N. M. Sadykov, “Statistical theory of rapid particles channelling based on the local Boltzmann equation. Correlation matrix of interactions and diffusion function of particles”, TMF, 111:3 (1997), 483–496; Theoret. and Math. Phys., 111:3 (1997), 779–790

Citation in format AMSBIB
\Bibitem{KasSad97}
\by Yu.~A.~Kashlev, N.~M.~Sadykov
\paper Statistical theory of rapid particles channelling based on the local Boltzmann equation. Correlation matrix of interactions and diffusion function of particles
\jour TMF
\yr 1997
\vol 111
\issue 3
\pages 483--496
\mathnet{http://mi.mathnet.ru/tmf1024}
\crossref{https://doi.org/10.4213/tmf1024}
\zmath{https://zbmath.org/?q=an:0978.82515}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 3
\pages 779--790
\crossref{https://doi.org/10.1007/BF02634066}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997YC44100014}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1024
  • https://doi.org/10.4213/tmf1024
  • http://mi.mathnet.ru/eng/tmf/v111/i3/p483

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Kashlev, N. M. Sadykov, “Nonequilibrium statistical thermodynamics of channeled particles: Resonance transitions and dechanneling”, Theoret. and Math. Phys., 116:1 (1998), 856–866  mathnet  crossref  crossref  isi
    2. Yu. A. Kashlev, N. M. Sadykov, “Nonequilibrium statistical thermodynamics of channeled particles: Thermal particles”, Theoret. and Math. Phys., 116:3 (1998), 1083–1093  mathnet  crossref  crossref  zmath  isi
    3. Yu. A. Kashlev, “Thermalization of Displacement Cascades in Solids and the Thermal Spike Model”, Theoret. and Math. Phys., 130:1 (2002), 111–122  mathnet  crossref  crossref  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:203
    Full text:93
    References:19
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020