RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1997, Volume 112, Number 2, Pages 179–194 (Mi tmf1038)  

This article is cited in 24 scientific papers (total in 24 papers)

Generalized Legendre transformations

V. E. Adlera, A. B. Shabatb

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: We discuss a general theory of the integrable Toda lattices which are considered as Lagrangian dynamical systems with one continuous and one discrete time. The invariance with respect to an analog of the classical Legendre transformations implies their integrability.

DOI: https://doi.org/10.4213/tmf1038

Full text: PDF file (310 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1997, 112:2, 935–948

Bibliographic databases:

Received: 04.06.1997

Citation: V. E. Adler, A. B. Shabat, “Generalized Legendre transformations”, TMF, 112:2 (1997), 179–194; Theoret. and Math. Phys., 112:2 (1997), 935–948

Citation in format AMSBIB
\Bibitem{AdlSha97}
\by V.~E.~Adler, A.~B.~Shabat
\paper Generalized Legendre transformations
\jour TMF
\yr 1997
\vol 112
\issue 2
\pages 179--194
\mathnet{http://mi.mathnet.ru/tmf1038}
\crossref{https://doi.org/10.4213/tmf1038}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1483275}
\zmath{https://zbmath.org/?q=an:0978.37504}
\elib{http://elibrary.ru/item.asp?id=13252523}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 2
\pages 935--948
\crossref{https://doi.org/10.1007/BF02634155}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997YE83300001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1038
  • https://doi.org/10.4213/tmf1038
  • http://mi.mathnet.ru/eng/tmf/v112/i2/p179

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. E. Adler, A. B. Shabat, “First integrals of generalized Toda chains”, Theoret. and Math. Phys., 115:3 (1998), 639–646  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. G. Marikhin, A. B. Shabat, “Integrable lattices”, Theoret. and Math. Phys., 118:2 (1999), 173–182  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. A. B. Shabat, “Third version of the dressing method”, Theoret. and Math. Phys., 121:1 (1999), 1397–1408  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. V. E. Adler, “Discretizations of the Landau–Lifshits equation”, Theoret. and Math. Phys., 124:1 (2000), 897–908  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. V. E. Adler, A. B. Shabat, R. I. Yamilov, “Symmetry approach to the integrability problem”, Theoret. and Math. Phys., 125:3 (2000), 1603–1661  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. V. E. Adler, “Legendre Transforms on a Triangular Lattice”, Funct. Anal. Appl., 34:1 (2000), 1–9  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. Calogero, F, “A novel solvable many-body problem with elliptic interactions”, International Mathematics Research Notices, 2000, no. 15, 775  crossref  mathscinet  zmath  isi
    8. Bruschi, M, “Solvable and/or integrable and/or linearizable N-body problems in ordinary (three-dimensional) space. I”, Journal of Nonlinear Mathematical Physics, 7:3 (2000), 303  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    9. Krichever, I, “Elliptic analog of the Toda lattice”, International Mathematics Research Notices, 2000, no. 8, 383  crossref  mathscinet  zmath  isi
    10. Adler, VE, “On the structure of the Backlund transformations for the relativistic lattices”, Journal of Nonlinear Mathematical Physics, 7:1 (2000), 34  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    11. V. E. Adler, V. G. Marikhin, A. B. Shabat, “Lagrangian Chains and Canonical Bäcklund Transformations”, Theoret. and Math. Phys., 129:2 (2001), 1448–1465  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. R. I. Yamilov, “Relativistic Toda Chains and Schlesinger Transformations”, Theoret. and Math. Phys., 139:2 (2004), 623–635  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    14. Ustinov, NV, “The lattice equations of the Toda type with an interaction between a few neighbourhoods”, Journal of Physics A-Mathematical and General, 37:5 (2004), 1737  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    15. Suris Y.B., “Discrete Lagrangian models”, Discrete Integrable Systems, Lecture Notes in Physics, 644, 2004, 111–184  crossref  mathscinet  zmath  adsnasa  isi
    16. Vsevolod E. Adler, Alexey B. Shabat, “On the One Class of Hyperbolic Systems”, SIGMA, 2 (2006), 093, 17 pp.  mathnet  crossref  mathscinet  zmath
    17. Yamilov, R, “Symmetries as integrability criteria for differential difference equations”, Journal of Physics A-Mathematical and General, 39:45 (2006), R541  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    18. Boll R., Suris Yu.B., “Non-symmetric discrete Toda systems from quad-graphs”, Appl Anal, 89:4 (2010), 547–569  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    19. Atkinson J., Joshi N., “Singular-Boundary Reductions of Type-Q Abs Equations”, Int. Math. Res. Notices, 2013, no. 7, 1451–1481  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    20. Perez Teruel G.R., “An Alternative Formulation of Classical Mechanics Based on an Analogy with Thermodynamics”, Eur. J. Phys., 34:6 (2013), 1589–1599  crossref  zmath  isi  scopus  scopus  scopus
    21. V. G. Marikhin, “Action as an invariant of Bäcklund transformations for Lagrangian systems”, Theoret. and Math. Phys., 184:1 (2015), 953–960  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    22. Adler V.E., “Integrability Test For Evolutionary Lattice Equations of Higher Order”, J. Symbolic Comput., 74 (2016), 125–139  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    23. Zhang Yu., Zhou R.-G., “A Chain of Type II and Its Exact Solutions”, Chin. Phys. Lett., 33:11 (2016), 110203  crossref  isi  scopus
    24. Suris Yu.B., “Discrete Time Toda Systems”, J. Phys. A-Math. Theor., 51:33 (2018)  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:510
    Full text:179
    References:42
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019