RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1997, Volume 112, Number 3, Pages 375–383 (Mi tmf1049)  

This article is cited in 8 scientific papers (total in 8 papers)

Integrable equations on $\mathbb Z$-graded Lie algebras

I. Z. Golubchik, V. V. Sokolov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: Evolution systems with $L$$A$-pairs in $\mathbb Z$-graded Lie algebras are investigated. Some different hierarchies of integrable systems are associated with the same $L$-operator. They correspond to different decompositions of zero component of the $\mathbb Z$-graded algebra in a direct sum of two subalgebras. As the result, new examples of multi-component integrable systems are constructed.

DOI: https://doi.org/10.4213/tmf1049

Full text: PDF file (228 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1997, 112:3, 1097–1103

Bibliographic databases:

Received: 13.02.1997

Citation: I. Z. Golubchik, V. V. Sokolov, “Integrable equations on $\mathbb Z$-graded Lie algebras”, TMF, 112:3 (1997), 375–383; Theoret. and Math. Phys., 112:3 (1997), 1097–1103

Citation in format AMSBIB
\Bibitem{GolSok97}
\by I.~Z.~Golubchik, V.~V.~Sokolov
\paper Integrable equations on $\mathbb Z$-graded Lie algebras
\jour TMF
\yr 1997
\vol 112
\issue 3
\pages 375--383
\mathnet{http://mi.mathnet.ru/tmf1049}
\crossref{https://doi.org/10.4213/tmf1049}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1486795}
\zmath{https://zbmath.org/?q=an:0968.35524}
\elib{http://elibrary.ru/item.asp?id=13250921}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 3
\pages 1097--1103
\crossref{https://doi.org/10.1007/BF02583041}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000071403900002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1049
  • https://doi.org/10.4213/tmf1049
  • http://mi.mathnet.ru/eng/tmf/v112/i3/p375

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Z. Golubchik, V. V. Sokolov, “Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 120:2 (1999), 1019–1025  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Gurses, M, “On construction of recursion operators from Lax representation”, Journal of Mathematical Physics, 40:12 (1999), 6473  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    3. A. V. Gladkov, V. V. Dmitrieva, R. A. Sharipov, “Some nonlinear equations reducible to diffusion-type equations”, Theoret. and Math. Phys., 123:1 (2000), 436–445  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. I. Z. Golubchik, V. V. Sokolov, “Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation”, Theoret. and Math. Phys., 124:1 (2000), 909–917  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. I. Z. Golubchik, V. V. Sokolov, “One More Kind of the Classical Yang–Baxter Equation”, Funct. Anal. Appl., 34:4 (2000), 296–298  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. A. A. Bormisov, F. Kh. Mukminov, “Symmetries of Systems of the Hyperbolic Riccati Type”, Theoret. and Math. Phys., 127:1 (2001), 446–459  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Sokolov, VV, “On decompositions of the loop algebra over so(3) into a sum of two subalgebras”, Doklady Mathematics, 70:1 (2004), 568  mathscinet  zmath  isi
    8. Vladimir S. Gerdjikov, Georgi G. Grahovski, Alexander V. Mikhailov, Tihomir I. Valchev, “Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces”, SIGMA, 7 (2011), 096, 48 pp.  mathnet  crossref  mathscinet
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:267
    Full text:87
    References:39
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019