|
This article is cited in 8 scientific papers (total in 8 papers)
Integrable equations on $\mathbb Z$-graded Lie algebras
I. Z. Golubchik, V. V. Sokolov Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Abstract:
Evolution systems with $L$–$A$-pairs in $\mathbb Z$-graded Lie algebras are investigated. Some different hierarchies of integrable systems are associated with the same $L$-operator. They correspond to different decompositions of zero component of the $\mathbb Z$-graded algebra in a direct sum of two subalgebras. As the result, new examples of multi-component integrable systems are constructed.
DOI:
https://doi.org/10.4213/tmf1049
Full text:
PDF file (228 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1997, 112:3, 1097–1103
Bibliographic databases:
Received: 13.02.1997
Citation:
I. Z. Golubchik, V. V. Sokolov, “Integrable equations on $\mathbb Z$-graded Lie algebras”, TMF, 112:3 (1997), 375–383; Theoret. and Math. Phys., 112:3 (1997), 1097–1103
Citation in format AMSBIB
\Bibitem{GolSok97}
\by I.~Z.~Golubchik, V.~V.~Sokolov
\paper Integrable equations on $\mathbb Z$-graded Lie algebras
\jour TMF
\yr 1997
\vol 112
\issue 3
\pages 375--383
\mathnet{http://mi.mathnet.ru/tmf1049}
\crossref{https://doi.org/10.4213/tmf1049}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1486795}
\zmath{https://zbmath.org/?q=an:0968.35524}
\elib{https://elibrary.ru/item.asp?id=13250921}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 3
\pages 1097--1103
\crossref{https://doi.org/10.1007/BF02583041}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000071403900002}
Linking options:
http://mi.mathnet.ru/eng/tmf1049https://doi.org/10.4213/tmf1049 http://mi.mathnet.ru/eng/tmf/v112/i3/p375
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. Z. Golubchik, V. V. Sokolov, “Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 120:2 (1999), 1019–1025
-
Gurses, M, “On construction of recursion operators from Lax representation”, Journal of Mathematical Physics, 40:12 (1999), 6473
-
A. V. Gladkov, V. V. Dmitrieva, R. A. Sharipov, “Some nonlinear equations reducible to diffusion-type equations”, Theoret. and Math. Phys., 123:1 (2000), 436–445
-
I. Z. Golubchik, V. V. Sokolov, “Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation”, Theoret. and Math. Phys., 124:1 (2000), 909–917
-
I. Z. Golubchik, V. V. Sokolov, “One More Kind of the Classical Yang–Baxter Equation”, Funct. Anal. Appl., 34:4 (2000), 296–298
-
A. A. Bormisov, F. Kh. Mukminov, “Symmetries of Systems of the Hyperbolic Riccati Type”, Theoret. and Math. Phys., 127:1 (2001), 446–459
-
Sokolov, VV, “On decompositions of the loop algebra over so(3) into a sum of two subalgebras”, Doklady Mathematics, 70:1 (2004), 568
-
Vladimir S. Gerdjikov, Georgi G. Grahovski, Alexander V. Mikhailov, Tihomir I. Valchev, “Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces”, SIGMA, 7 (2011), 096, 48 pp.
|
Number of views: |
This page: | 316 | Full text: | 126 | References: | 44 | First page: | 2 |
|