Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1997, Volume 113, Number 1, Pages 100–111 (Mi tmf1068)  

This article is cited in 1 scientific paper (total in 1 paper)

Physical phase space of the lattice Yang–Mills theory and moduli space of flat connections on a Riemann surface

S. A. Frolovab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Technische Universität München

Abstract: It is shown that the physical phase space of $\gamma$-deformed, Hamiltonian-lattice Yang–Mills theory, which was recently proposed in [1], [2], coincides as a Poisson manifold with the moduli space of flat connections on a Riemann surface with $(L-V+1)$ handles and, therefore, with the physical phase space of the corresponding $(2+1)$-dimensional Chern–Simons model, where $L$ and $V$ are, respectively, the total number of links and vertices of the lattice. The deformation parameter $\gamma$ is identified with $2\pi/k$ and $k$ is an integer entering the Chern–Simons action.

DOI: https://doi.org/10.4213/tmf1068

Full text: PDF file (228 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1997, 113:1, 1289–1298

Bibliographic databases:

Received: 29.04.1997

Citation: S. A. Frolov, “Physical phase space of the lattice Yang–Mills theory and moduli space of flat connections on a Riemann surface”, TMF, 113:1 (1997), 100–111; Theoret. and Math. Phys., 113:1 (1997), 1289–1298

Citation in format AMSBIB
\Bibitem{Fro97}
\by S.~A.~Frolov
\paper Physical phase space of the lattice Yang--Mills theory and moduli space of flat connections on a Riemann surface
\jour TMF
\yr 1997
\vol 113
\issue 1
\pages 100--111
\mathnet{http://mi.mathnet.ru/tmf1068}
\crossref{https://doi.org/10.4213/tmf1068}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1489731}
\zmath{https://zbmath.org/?q=an:0963.58500}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 113
\issue 1
\pages 1289--1298
\crossref{https://doi.org/10.1007/BF02634016}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000071746100009}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1068
  • https://doi.org/10.4213/tmf1068
  • http://mi.mathnet.ru/eng/tmf/v113/i1/p100

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Riello A., “Self-Dual Phase Space For (3+1)-Dimensional Lattice Yang-Mills Theory”, Phys. Rev. D, 97:2 (2018), 025003  crossref  mathscinet  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:387
    Full text:152
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021