RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1997, Volume 113, Number 2, Pages 179–230 (Mi tmf1074)  

This article is cited in 56 scientific papers (total in 56 papers)

A survey of Hirota's difference equations

A. V. Zabrodinab

a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: A review of selected topics in Hirota's bilinear difference equation (HBDE) is given. This famous 3-dimensional difference equation is known to provide a canonical integrable discretization for most important types of soliton equations. Similarly to the continuous theory, HBDE is a member of an infinite hierarchy. The central point of our exposition is a discrete version of the zero curvature condition explicitly written in the form of discrete Zakharov–Shabat equations for $M$-operators realized as difference or pseudo-difference operators. A unified approach to various types of $M$-operators and zero curvature representations is suggested. Different reductions of HBDE to 2-dimensional equations are considered. Among them discrete counterparts of the KdV, sine-Gordon, Toda chain, relativistic Toda chain and other typical examples are discussed in detail.

DOI: https://doi.org/10.4213/tmf1074

Full text: PDF file (534 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1997, 113:2, 1347–1392

Bibliographic databases:

Received: 20.06.1997

Citation: A. V. Zabrodin, “A survey of Hirota's difference equations”, TMF, 113:2 (1997), 179–230; Theoret. and Math. Phys., 113:2 (1997), 1347–1392

Citation in format AMSBIB
\Bibitem{Zab97}
\by A.~V.~Zabrodin
\paper A survey of Hirota's difference equations
\jour TMF
\yr 1997
\vol 113
\issue 2
\pages 179--230
\mathnet{http://mi.mathnet.ru/tmf1074}
\crossref{https://doi.org/10.4213/tmf1074}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1608967}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 113
\issue 2
\pages 1347--1392
\crossref{https://doi.org/10.1007/BF02634165}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000072788800001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1074
  • https://doi.org/10.4213/tmf1074
  • http://mi.mathnet.ru/eng/tmf/v113/i2/p179

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Verbus, A. P. Protogenov, “Equations of motion and conserved quantities in non-Abelian discrete integrable models”, Theoret. and Math. Phys., 119:1 (1999), 420–430  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. V. Zabrodin, “Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet”, Theoret. and Math. Phys., 125:2 (2000), 1455–1475  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. A. V. Zabrodin, “Dispersionless Limit of Hirota Equations in Some Problems of Complex Analysis”, Theoret. and Math. Phys., 129:2 (2001), 1511–1525  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Kasman, A, “Solitons and almost-intertwining matrices”, Journal of Mathematical Physics, 42:8 (2001), 3540  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. M. M. Gekhtman, A. Kasman, “Integrable Systems and Rank-One Conditions for Rectangular Matrices”, Theoret. and Math. Phys., 133:2 (2002), 1498–1503  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Bobenko, AI, “Hexagonal circle patterns and integrable systems: Patterns with the multi-ratio property and lax equations on the regular triangular lattice”, International Mathematics Research Notices, 2002, no. 3, 111  crossref  mathscinet  zmath  isi
    7. Pyatov, P, “Raise and peel models of fluctuating interfaces and combinatorics of Pascal's hexagon”, Journal of Statistical Mechanics-Theory and Experiment, 2004, P09003  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Kazakova, TG, “Finite-dimensional reductions of the discrete Toda chain”, Journal of Physics A-Mathematical and General, 37:33 (2004), 8089  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    9. Carroll, GD, “The cube recurrence”, Electronic Journal of Combinatorics, 11:1 (2004), R73  mathscinet  zmath  isi
    10. Abanov, AG, “Quantum hydrodynamics, the quantum Benjamin-Ono equation, and the Calogero model”, Physical Review Letters, 95:7 (2005), 076402  crossref  adsnasa  isi  scopus  scopus  scopus
    11. I. T. Habibullin, “C-Series Discrete Chains”, Theoret. and Math. Phys., 146:2 (2006), 170–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Kasman, A, “When is negativity not a problem for the ultradiscrete limit?”, Journal of Mathematical Physics, 47:10 (2006), 103510  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    13. Ramani, A, “Discrete systems related to the sixth Painlevé equation”, Journal of Physics A-Mathematical and General, 39:39 (2006), 12167  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    14. Hone, ANW, “Diophantine non-integrability of a third-order recurrence with the Laurent property”, Journal of Physics A-Mathematical and General, 39:12 (2006), L171  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    15. Gekhtman, M, “On KP generators and the geometry of the HBDE”, Journal of Geometry and Physics, 56:2 (2006), 282  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    16. Andrew N. W. Hone, “Laurent Polynomials and Superintegrable Maps”, SIGMA, 3 (2007), 022, 18 pp.  mathnet  crossref  mathscinet  zmath
    17. Hone, ANW, “Singularity confinement for maps with the Laurent property”, Physics Letters A, 361:4–5 (2007), 341  crossref  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    18. A. V. Zabrodin, “Bäcklund transformations for the difference Hirota equation and the supersymmetric Bethe ansatz”, Theoret. and Math. Phys., 155:1 (2008), 567–584  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. Habibullin, I, “On the classification of Darboux integrable chains”, Journal of Mathematical Physics, 49:10 (2008), 102702  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    20. Habibullin, I, “On some algebraic properties of semi-discrete hyperbolic type equations”, Turkish Journal of Mathematics, 32:3 (2008), 277  mathscinet  zmath  isi
    21. Alcaraz, FC, “Density profiles in the raise and peel model with and without a wall; physics and combinatorics”, Journal of Statistical Mechanics-Theory and Experiment, 2008, P01006  crossref  isi  scopus  scopus  scopus
    22. Hone, ANW, “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Mathematical Proceedings of the Cambridge Philosophical Society, 145 (2008), 65  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    23. Kazakov, V, “Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics”, Nuclear Physics B, 790:3 (2008), 345  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    24. de Gier, J, “Punctured plane partitions and the q-deformed Knizhnik–Zamolodchikov and Hirota equations”, Journal of Combinatorial Theory Series A, 116:4 (2009), 772  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    25. Lobb, SB, “Lagrangian multiform structure for the lattice KP system”, Journal of Physics A-Mathematical and Theoretical, 42:47 (2009), 472002  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    26. Habibullin, I, “Complete list of Darboux integrable chains of the form t(1x)=t(x)+d(t,t(1))”, Journal of Mathematical Physics, 50:10 (2009), 102710  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    27. Doliwa, A, “Darboux transformations for linear operators on two-dimensional regular lattices”, Journal of Physics A-Mathematical and Theoretical, 42:45 (2009), 454001  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    28. Konopelchenko, BG, “Discrete integrable systems and deformations of associative algebras”, Journal of Physics A-Mathematical and Theoretical, 42:45 (2009), 454003  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    29. Doliwa A., “Desargues maps and the Hirota-Miwa equation”, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 466:2116 (2010), 1177–1200  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    30. N. A. Zheltukhina, A. U. Sakieva, I. T. Khabibullin, “Kharakteristicheskaya algebra Li i integriruemye po Darbu diskretnye tsepochki”, Ufimsk. matem. zhurn., 2:4 (2010), 39–51  mathnet  zmath  elib
    31. Habibullin I., Zheltukhina N., Sakieva A., “On Darboux-integrable semi-discrete chains”, Journal of Physics A-Mathematical and Theoretical, 43:43 (2010), 434017  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    32. Hone A.N.W., “Analytic solutions and integrability for bilinear recurrences of order six”, Appl Anal, 89:4 (2010), 473–492  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    33. Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp.  mathnet  crossref  mathscinet
    34. A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, “Kharakteristicheskie koltsa Li i integriruemye modeli matematicheskoi fiziki”, Ufimsk. matem. zhurn., 4:3 (2012), 17–85  mathnet  mathscinet
    35. Adler V.E. Bobenko A.I. Suris Yu.B., “Classification of Integrable Discrete Equations of Octahedron Type”, Int. Math. Res. Notices, 2012, no. 8, 1822–1889  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    36. Ferapontov E.V. Novikov V.S. Roustemoglou I., “Towards the Classification of Integrable Differential-Difference Equations in 2+1 Dimensions”, J. Phys. A-Math. Theor., 46:24 (2013), 245207  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    37. Yoo-Kong S., Nijhoff F., “Elliptic (N, N `)-Soliton Solutions of the Lattice Kadomtsev-Petviashvili Equation”, J. Math. Phys., 54:4 (2013), 043511  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    38. Wang Ya., Wang Zh., “Exact Solutions for (3+1)-Dimensional Potential-Ytsf Equation and Discrete Kadomtsev-Petviashvili Equation”, J. Appl. Math., 2013, 142027  crossref  mathscinet  isi  scopus  scopus  scopus
    39. Shi Y., Nimmo J.J.C., Zhang D.-J., “Darboux and Binary Darboux Transformations for Discrete Integrable Systems I. Discrete Potential KdV Equation”, J. Phys. A-Math. Theor., 47:2 (2014)  crossref  mathscinet  isi  scopus  scopus  scopus
    40. A. K. Pogrebkov, “Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons”, Theoret. and Math. Phys., 181:3 (2014), 1585–1598  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    41. Fordy A.P., “Periodic Cluster Mutations and Related Integrable Maps”, J. Phys. A-Math. Theor., 47:47 (2014), 474003  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    42. Doliwa A. Lin R., “Discrete KP Equation With Self-Consistent Sources”, Phys. Lett. A, 378:28-29 (2014), 1925–1931  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    43. S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    44. V. E. Akhmedova, A. V. Zabrodin, “Elliptic parameterization of Pfaff integrable hierarchies in the zero-dispersion limit”, Theoret. and Math. Phys., 185:3 (2015), 1718–1728  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    45. A. K. Pogrebkov, “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187:3 (2016), 823–834  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    46. V. G. Marikhin, “Three-dimensional lattice of Bäcklund transformations of integrable cases of the Davey–Stewartson system”, Theoret. and Math. Phys., 189:3 (2016), 1718–1725  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    47. Hamad Kh., van der Kamp P.H., “From discrete integrable equations to Laurent recurrences”, J. Differ. Equ. Appl., 22:6 (2016), 789–816  crossref  mathscinet  zmath  isi  elib  scopus
    48. Hietarinta J. Joshi N. Nijhoff F., “Discrete Systems and Integrability”, Discrete Systems and Integrability, Cambridge Texts in Applied Mathematics, Cambridge Univ Press, 2016, 1–445  mathscinet  zmath  isi
    49. Andrei K. Pogrebkov, “Symmetries of the Hirota Difference Equation”, SIGMA, 13 (2017), 053, 14 pp.  mathnet  crossref  mathscinet
    50. Andrew N. W. Hone, Theodoros E. Kouloukas, Chloe Ward, “On Reductions of the Hirota–Miwa Equation”, SIGMA, 13 (2017), 057, 17 pp.  mathnet  crossref
    51. Hamad K., Hone A.N.W., van der Kamp P.H., Quispel G.R.W., “Qrt Maps and Related Laurent Systems”, Adv. Appl. Math., 96 (2018), 216–248  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    52. Runliang Lin, Yukun Du, “Generalized Darboux transformation for the discrete Kadomtsev–Petviashvili equation with self-consistent sources”, Theoret. and Math. Phys., 196:3 (2018), 1320–1332  mathnet  crossref  crossref  adsnasa  isi  elib
    53. A. K. Pogrebkov, “Higher Hirota difference equations and their reductions”, Theoret. and Math. Phys., 197:3 (2018), 1779–1796  mathnet  crossref  crossref  adsnasa  isi  elib
    54. M. A. Bershtein, P. G. Gavrilenko, A. V. Marshakov, “Cluster Toda chains and Nekrasov functions”, Theoret. and Math. Phys., 198:2 (2019), 157–188  mathnet  crossref  crossref  adsnasa  isi  elib
    55. Glick M., Pylyavskyy P., “Discrete Solitons in Infinite Reduced Words”, Transform. Groups, 24:1 (2019), 31–66  crossref  mathscinet  zmath  isi  scopus
    56. Pogrebkov A., “Hirota Difference Equation and Darboux System: Mutual Symmetry”, Symmetry-Basel, 11:3 (2019), 436  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:712
    Full text:250
    References:39
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019