RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1996, Volume 106, Number 2, Pages 273–284 (Mi tmf1113)  

Local symmetry algebra of Shrödinger equation for Hydrogen atom

A. A. Drokina, A. V. Shapovalova, I. V. Shirokovb

a Tomsk State University
b Omsk State University

Abstract: The complete description of local symmetries (which are differential operators of arbitrary finite order) is given for stationary Shrödinger equation for Hydrogen atom. This is done using the reduction of Shrödinger equation for isotropic harmonic oscillator to one for the Hydrogen atom, which induces the correspondent symmetry algebras reduction. It is shown that all nontrivial local symmetry operators for $n$-dimensional isotropic harmonic oscillator belong to enveloping algebra $U(su(n,C))$ of algebra $su(n,C)$. For Hydrogen atom all nontrivial local symmetries constitute enveloping algebra $U(so(4,C))$ of algebra $so(4,C)$. Basis of $so(4,C)$ consists of rotation group generators and Runge–Lenz-operators.

DOI: https://doi.org/10.4213/tmf1113

Full text: PDF file (260 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1996, 106:2, 227–236

Bibliographic databases:

Received: 03.05.1995

Citation: A. A. Drokin, A. V. Shapovalov, I. V. Shirokov, “Local symmetry algebra of Shrödinger equation for Hydrogen atom”, TMF, 106:2 (1996), 273–284; Theoret. and Math. Phys., 106:2 (1996), 227–236

Citation in format AMSBIB
\Bibitem{DroShaShi96}
\by A.~A.~Drokin, A.~V.~Shapovalov, I.~V.~Shirokov
\paper Local symmetry algebra of Shr\"odinger equation for Hydrogen atom
\jour TMF
\yr 1996
\vol 106
\issue 2
\pages 273--284
\mathnet{http://mi.mathnet.ru/tmf1113}
\crossref{https://doi.org/10.4213/tmf1113}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1402010}
\zmath{https://zbmath.org/?q=an:0889.35083}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 106
\issue 2
\pages 227--236
\crossref{https://doi.org/10.1007/BF02071077}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996VN51500008}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1113
  • https://doi.org/10.4213/tmf1113
  • http://mi.mathnet.ru/eng/tmf/v106/i2/p273

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:423
    Full text:97
    References:15
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019