RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1996, Volume 108, Number 3, Pages 388–392 (Mi tmf1196)  

This article is cited in 12 scientific papers (total in 12 papers)

Deformations of triple Jordan systems and integrable equations

S. I. Svinolupov, V. V. Sokolov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: Deformations of arbitrary triple Jordan systems are considered. They are defined in terms of the deformation vector satisfying a compatible overdetermined system of differential equations. For the simple triple Jordan systems the deformation vector is explicitly found. It gives rise to new classes of integrable partial differential equations with arbitrary number of unknown functions.

DOI: https://doi.org/10.4213/tmf1196

Full text: PDF file (165 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1996, 108:3, 1160–1163

Bibliographic databases:

Received: 08.02.1996

Citation: S. I. Svinolupov, V. V. Sokolov, “Deformations of triple Jordan systems and integrable equations”, TMF, 108:3 (1996), 388–392; Theoret. and Math. Phys., 108:3 (1996), 1160–1163

Citation in format AMSBIB
\Bibitem{SviSok96}
\by S.~I.~Svinolupov, V.~V.~Sokolov
\paper Deformations of triple Jordan systems and integrable equations
\jour TMF
\yr 1996
\vol 108
\issue 3
\pages 388--392
\mathnet{http://mi.mathnet.ru/tmf1196}
\crossref{https://doi.org/10.4213/tmf1196}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1430080}
\zmath{https://zbmath.org/?q=an:1041.37503}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 108
\issue 3
\pages 1160--1163
\crossref{https://doi.org/10.1007/BF02070241}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996XE83400002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1196
  • https://doi.org/10.4213/tmf1196
  • http://mi.mathnet.ru/eng/tmf/v108/i3/p388

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Z. Golubchik, V. V. Sokolov, “Integrable equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 112:3 (1997), 1097–1103  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Olver, PJ, “Integrable evolution equations on associative algebras”, Communications in Mathematical Physics, 193:2 (1998), 245  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. I. Z. Golubchik, V. V. Sokolov, “Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 120:2 (1999), 1019–1025  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Adler, VE, “Multi-component Volterra acid Toda type integrable equations”, Physics Letters A, 254:1–2 (1999), 24  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. Bruschi, M, “Solvable and/or integrable and/or linearizable N-body problems in ordinary (three-dimensional) space. I”, Journal of Nonlinear Mathematical Physics, 7:3 (2000), 303  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    6. Sokolov, VV, “Classification of integrable polynomial vector evolution equations”, Journal of Physics A-Mathematical and General, 34:49 (2001), 11139  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    7. Meshkov, AG, “Integrable evolution equations on the N-dimensional sphere”, Communications in Mathematical Physics, 232:1 (2002), 1  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    8. Anco, SC, “Some symmetry classifications of hyperbolic vector evolution equations”, Journal of Nonlinear Mathematical Physics, 12 (2005), 13  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    9. A. G. Meshkov, “On symmetry classification of third order evolutionary systems of divergent type”, J. Math. Sci., 151:4 (2008), 3167–3181  mathnet  crossref  mathscinet  zmath
    10. Adler, VE, “Classification of integrable Volterra-type lattices on the sphere: isotropic case”, Journal of Physics A-Mathematical and Theoretical, 41:14 (2008), 145201  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    11. Zhao Zh., Han B., “Lie symmetry analysis of the Heisenberg equation”, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 220–234  crossref  mathscinet  isi  elib  scopus
    12. V. V. Sokolov, “Integrable evolution systems of geometric type”, Theoret. and Math. Phys., 202:3 (2020), 428–436  mathnet  crossref  crossref  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:321
    Full text:133
    References:38
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021