|
This article is cited in 12 scientific papers (total in 12 papers)
Deformations of triple Jordan systems and integrable equations
S. I. Svinolupov, V. V. Sokolov Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Abstract:
Deformations of arbitrary triple Jordan systems are considered. They are defined in terms of the deformation vector satisfying a compatible overdetermined system of differential equations. For the simple triple Jordan systems the deformation vector is explicitly found. It
gives rise to new classes of integrable partial differential equations with arbitrary number of unknown functions.
DOI:
https://doi.org/10.4213/tmf1196
Full text:
PDF file (165 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1996, 108:3, 1160–1163
Bibliographic databases:
Received: 08.02.1996
Citation:
S. I. Svinolupov, V. V. Sokolov, “Deformations of triple Jordan systems and integrable equations”, TMF, 108:3 (1996), 388–392; Theoret. and Math. Phys., 108:3 (1996), 1160–1163
Citation in format AMSBIB
\Bibitem{SviSok96}
\by S.~I.~Svinolupov, V.~V.~Sokolov
\paper Deformations of triple Jordan systems and integrable equations
\jour TMF
\yr 1996
\vol 108
\issue 3
\pages 388--392
\mathnet{http://mi.mathnet.ru/tmf1196}
\crossref{https://doi.org/10.4213/tmf1196}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1430080}
\zmath{https://zbmath.org/?q=an:1041.37503}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 108
\issue 3
\pages 1160--1163
\crossref{https://doi.org/10.1007/BF02070241}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996XE83400002}
Linking options:
http://mi.mathnet.ru/eng/tmf1196https://doi.org/10.4213/tmf1196 http://mi.mathnet.ru/eng/tmf/v108/i3/p388
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. Z. Golubchik, V. V. Sokolov, “Integrable equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 112:3 (1997), 1097–1103
-
Olver, PJ, “Integrable evolution equations on associative algebras”, Communications in Mathematical Physics, 193:2 (1998), 245
-
I. Z. Golubchik, V. V. Sokolov, “Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 120:2 (1999), 1019–1025
-
Adler, VE, “Multi-component Volterra acid Toda type integrable equations”, Physics Letters A, 254:1–2 (1999), 24
-
Bruschi, M, “Solvable and/or integrable and/or linearizable N-body problems in ordinary (three-dimensional) space. I”, Journal of Nonlinear Mathematical Physics, 7:3 (2000), 303
-
Sokolov, VV, “Classification of integrable polynomial vector evolution equations”, Journal of Physics A-Mathematical and General, 34:49 (2001), 11139
-
Meshkov, AG, “Integrable evolution equations on the N-dimensional sphere”, Communications in Mathematical Physics, 232:1 (2002), 1
-
Anco, SC, “Some symmetry classifications of hyperbolic vector evolution equations”, Journal of Nonlinear Mathematical Physics, 12 (2005), 13
-
A. G. Meshkov, “On symmetry classification of third order evolutionary systems of divergent type”, J. Math. Sci., 151:4 (2008), 3167–3181
-
Adler, VE, “Classification of integrable Volterra-type lattices on the sphere: isotropic case”, Journal of Physics A-Mathematical and Theoretical, 41:14 (2008), 145201
-
Zhao Zh., Han B., “Lie symmetry analysis of the Heisenberg equation”, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 220–234
-
V. V. Sokolov, “Integrable evolution systems of geometric type”, Theoret. and Math. Phys., 202:3 (2020), 428–436
|
Number of views: |
This page: | 321 | Full text: | 133 | References: | 38 | First page: | 1 |
|