RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1995, Volume 103, Number 1, Pages 170–175 (Mi tmf1294)  

This article is cited in 11 scientific papers (total in 11 papers)

On the Laplace–Darboux theory of transformations

A. B. Shabat

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: In the framework of the classical Laplace–Darboux theory the formula of the fractional-rational transformations of the solutions of the linear second order partial differential equation with the two independent variables is established. The one-dimensional reduction discussed briefly.

Full text: PDF file (530 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1995, 103:1, 482–485

Bibliographic databases:

Received: 28.02.1995

Citation: A. B. Shabat, “On the Laplace–Darboux theory of transformations”, TMF, 103:1 (1995), 170–175; Theoret. and Math. Phys., 103:1 (1995), 482–485

Citation in format AMSBIB
\Bibitem{Sha95}
\by A.~B.~Shabat
\paper On the Laplace--Darboux theory of transformations
\jour TMF
\yr 1995
\vol 103
\issue 1
\pages 170--175
\mathnet{http://mi.mathnet.ru/tmf1294}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1470941}
\zmath{https://zbmath.org/?q=an:0855.35004}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 1
\pages 482--485
\crossref{https://doi.org/10.1007/BF02069791}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995RZ96200013}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1294
  • http://mi.mathnet.ru/eng/tmf/v103/i1/p170

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Zenchuk, “Some generalizations of the 2-dimensional Toda chain and $\operatorname{sh}$-Gordon equation”, Theoret. and Math. Phys., 110:2 (1997), 183–189  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. V. Yurov, “Conjugate chains of discrete symmetries in $(1+2)$ nonlinear equations”, Theoret. and Math. Phys., 119:3 (1999), 731–738  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. E. A. Kartashova, “A hierarchy of generalized invariants for linear partial differential operators”, Theoret. and Math. Phys., 147:3 (2006), 839–846  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. V. G. Marikhin, “The dressing method and separation of variables: The two-dimensional case”, Theoret. and Math. Phys., 161:3 (2009), 1599–1603  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. V. G. Marikhin, “Solutions of two-dimensional Schrödinger-type equations in a magnetic field”, Theoret. and Math. Phys., 168:2 (2011), 1041–1047  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    6. S. V. Smirnov, “Semidiscrete Toda lattices”, Theoret. and Math. Phys., 172:3 (2012), 1217–1231  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    7. P. G. Grinevich, S. P. Novikov, “Discrete $SL_n$-connections and self-adjoint difference operators on two-dimensional manifolds”, Russian Math. Surveys, 68:5 (2013), 861–887  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. David Hobby, Ekaterina Shemyakova, “Classification of Multidimensional Darboux Transformations: First Order and Continued Type”, SIGMA, 13 (2017), 010, 20 pp.  mathnet  crossref
    10. Li S. Shemyakova E. Voronov T., “Differential Operators on the Superline, Berezinians, and Darboux Transformations”, Lett. Math. Phys., 107:9 (2017), 1689–1714  crossref  isi
    11. S. V. Smirnov, “Factorization of Darboux–Laplace transformations for discrete hyperbolic operators”, Theoret. and Math. Phys., 199:2 (2019), 621–636  mathnet  crossref
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:459
    Full text:172
    References:46
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020