RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1995, Volume 104, Number 2, Pages 356–367 (Mi tmf1344)  

This article is cited in 20 scientific papers (total in 20 papers)

Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics

V. G. Bagrova, B. F. Samsonovb

a Tomsk State University
b Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences

Abstract: We introduce an $N$-order Darboux transformation operator as a particular case of general transformation operators. It is shown that this operator can always be represented as a product of $N$ first-order Darboux transformation operators. The relationship between this transformation and the factorization method is investigated. Supercharge operators are introduced. They are differential operators of order $N$. It is shown that these operators and super-Hamiltonian form a superalgebra of order $N$. For $N=2$, we have a quadratic superalgebra analogous to the Sklyanin quadratic algebras. The relationship between the transformation introduced and the inverse scattering problem in quantum mechanics is established. An elementary $N$-parametric potential that has exactly $N$ predetermined discrete spectrum levels is constructed. The paper concludes with some examples of new exactly soluble potentials.

Full text: PDF file (1389 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1995, 104:2, 1051–1060

Bibliographic databases:

Received: 10.10.1994

Citation: V. G. Bagrov, B. F. Samsonov, “Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics”, TMF, 104:2 (1995), 356–367; Theoret. and Math. Phys., 104:2 (1995), 1051–1060

Citation in format AMSBIB
\Bibitem{BagSam95}
\by V.~G.~Bagrov, B.~F.~Samsonov
\paper Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics
\jour TMF
\yr 1995
\vol 104
\issue 2
\pages 356--367
\mathnet{http://mi.mathnet.ru/tmf1344}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1488681}
\zmath{https://zbmath.org/?q=an:0857.34070}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 104
\issue 2
\pages 1051--1060
\crossref{https://doi.org/10.1007/BF02065985}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995UD33400013}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1344
  • http://mi.mathnet.ru/eng/tmf/v104/i2/p356

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. F. Samsonov, “On the $N$-th order Darboux transformation”, Russian Math. (Iz. VUZ), 43:6 (1999), 62–65  mathnet  mathscinet  zmath
    2. Andrey M. Pupasov, Boris F. Samsonov, “Exact Propagators for Soliton Potentials”, SIGMA, 1 (2005), 020, 7 pp.  mathnet  crossref  mathscinet  zmath
    3. A. A. Andrianov, A. V. Sokolov, “Factorization of nonlinear supersymmetry in one-dimensional Quantum Mechanics I: general classification of reducibility and analysis of third-order algebra”, J. Math. Sci. (N. Y.), 143:1 (2007), 2707–2722  mathnet  crossref  mathscinet  zmath  elib  elib
    4. Andrianov, AA, “Non-linear supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: I. General properties”, Nuclear Physics B, 773:3 (2007), 107  crossref  mathscinet  zmath  adsnasa  isi
    5. Alexander A. Andrianov, Andrey V. Sokolov, “Hidden Symmetry from Supersymmetry in One-Dimensional Quantum Mechanics”, SIGMA, 5 (2009), 064, 26 pp.  mathnet  crossref  mathscinet
    6. Ryu Sasaki, Wen-Li Yang, Yao-Zhong Zhang, “Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations”, SIGMA, 5 (2009), 104, 16 pp.  mathnet  crossref  zmath
    7. Mikhail V. Ioffe, “Supersymmetrical Separation of Variables in Two-Dimensional Quantum Mechanics”, SIGMA, 6 (2010), 075, 10 pp.  mathnet  crossref  mathscinet
    8. Orlando Ragnisco, Danilo Riglioni, “A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum”, SIGMA, 6 (2010), 097, 10 pp.  mathnet  crossref  mathscinet
    9. Fernandez C D.J., “Supersymmetric Quantum Mechanics”, Advanced Summer School in Physics 2009: Frontiers in Contemporary Physics, 5th Edition, AIP Conference Proceedings, 1287, 2010, 3–36  isi
    10. David Bermúdez, “Complex SUSY transformations and the Painlevé IV equation”, SIGMA, 8 (2012), 069, 10 pp.  mathnet  crossref  mathscinet
    11. Christiane Quesne, “Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen–Morse II and Eckart potentials”, SIGMA, 8 (2012), 080, 19 pp.  mathnet  crossref  mathscinet
    12. Andrianov A.A. Ioffe M.V., “Nonlinear Supersymmetric Quantum Mechanics: Concepts and Realizations”, J. Phys. A-Math. Theor., 45:50 (2012), 503001  crossref  isi
    13. Marquette I. Quesne Ch., “Combined State-Adding and State-Deleting Approaches To Type III Multi-Step Rationally Extended Potentials: Applications To Ladder Operators and Superintegrability”, J. Math. Phys., 55:11 (2014), 112103  crossref  isi
    14. Gomez-Ullate D. Grandati Y. Milson R., “Extended Krein-Adler Theorem For the Translationally Shape Invariant Potentials”, J. Math. Phys., 55:4 (2014), 043510  crossref  isi
    15. Th. Th. Voronov, S. Hill, E. S. Shemyakova, “Darboux transformations for differential operators on the superline”, Russian Math. Surveys, 70:6 (2015), 1173–1175  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    16. Pupasov-Maksimov A.M., “Propagators of Isochronous An-Harmonic Oscillators and Mehler Formula For the Exceptional Hermite Polynomials”, Ann. Phys., 363 (2015), 122–135  crossref  isi
    17. David Hobby, Ekaterina Shemyakova, “Classification of Multidimensional Darboux Transformations: First Order and Continued Type”, SIGMA, 13 (2017), 010, 20 pp.  mathnet  crossref
    18. A. I. Aptekarev, M. A. Lapik, Yu. N. Orlov, “Asymptotic behavior of the spectrum of combination scattering at Stokes phonons”, Theoret. and Math. Phys., 193:1 (2017), 1480–1497  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    19. Li S. Shemyakova E. Voronov T., “Differential Operators on the Superline, Berezinians, and Darboux Transformations”, Lett. Math. Phys., 107:9 (2017), 1689–1714  crossref  isi
    20. Carinena J.F. Plyushchay M.S., “Abc of Ladder Operators For Rationally Extended Quantum Harmonic Oscillator Systems”, J. Phys. A-Math. Theor., 50:27 (2017), 275202  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:621
    Full text:274
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019