RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1995, Volume 105, Number 2, Pages 179–197 (Mi tmf1367)  

This article is cited in 2 scientific papers (total in 2 papers)

Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization

A. I. Kirillov

Moscow Power Engineering Institute (Technical University)

Abstract: Using the theory of Dirichlet forms we prove the existence of a distribution-valued diffusion process such that the Nelson measure of a field with bounded interaction density is its invariant probability measure. A Langevin equation in mathematically correct form is formulated which is satisfied by the process. The drift term of the equation is interpreted as a renormalized Euclidean current operator.

Full text: PDF file (1654 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1995, 105:2, 1329–1345

Bibliographic databases:

Received: 31.10.1994

Citation: A. I. Kirillov, “Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization”, TMF, 105:2 (1995), 179–197; Theoret. and Math. Phys., 105:2 (1995), 1329–1345

Citation in format AMSBIB
\Bibitem{Kir95}
\by A.~I.~Kirillov
\paper Sine-Gordon type field in spacetime of arbitrary dimension.~II:~Stochastic quantization
\jour TMF
\yr 1995
\vol 105
\issue 2
\pages 179--197
\mathnet{http://mi.mathnet.ru/tmf1367}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1601121}
\zmath{https://zbmath.org/?q=an:0870.60099}
\elib{http://elibrary.ru/item.asp?id=12751654}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 105
\issue 2
\pages 1329--1345
\crossref{https://doi.org/10.1007/BF02070929}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995UP84300001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1367
  • http://mi.mathnet.ru/eng/tmf/v105/i2/p179

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Kirillov, V. Yu. Mamakin, “Stochastic model of phase transition and metastability”, Theoret. and Math. Phys., 123:1 (2000), 494–503  mathnet  crossref  crossref  zmath  isi  elib
    2. V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:183
    Full text:76
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019