RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1995, Volume 105, Number 3, Pages 355–363 (Mi tmf1379)  

This article is cited in 1 scientific paper (total in 1 paper)

Integral intertwining operators and quantum homogeneous spaces

L. L. Vaksman

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine

Abstract: Integral representations of functions on quantum homogeneous spaces are considered. The Dirichlet problem for the quantum ball is solved and a $q$-analog of the Cauchy–Szegö formula is derived.

Full text: PDF file (767 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1995, 105:3, 1476–1483

Bibliographic databases:

Received: 17.01.1995

Citation: L. L. Vaksman, “Integral intertwining operators and quantum homogeneous spaces”, TMF, 105:3 (1995), 355–363; Theoret. and Math. Phys., 105:3 (1995), 1476–1483

Citation in format AMSBIB
\Bibitem{Vak95}
\by L.~L.~Vaksman
\paper Integral intertwining operators and quantum homogeneous spaces
\jour TMF
\yr 1995
\vol 105
\issue 3
\pages 355--363
\mathnet{http://mi.mathnet.ru/tmf1379}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1605615}
\zmath{https://zbmath.org/?q=an:0936.17019}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 105
\issue 3
\pages 1476--1483
\crossref{https://doi.org/10.1007/BF02070867}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995VD44600001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1379
  • http://mi.mathnet.ru/eng/tmf/v105/i3/p355

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. Bershtein, S. Sinel'shchikov, “A $q$-analog of the Hua equations”, Zhurn. matem. fiz., anal., geom., 5:3 (2009), 219–244  mathnet  mathscinet  zmath
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:204
    Full text:65
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019