RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2003, Volume 134, Number 1, Pages 55–73 (Mi tmf140)  

This article is cited in 4 scientific papers (total in 4 papers)

Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$

R. K. Bullougha, N. M. Bogolyubovb, V. S. Kapitonovc, K. L. Malyshevb, I. Timonend, A. V. Rybind, G. G. Varzugine, M. Lindbergf

a University of Manchester, Department of Mathematics
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c State Technological Institute of St. Petersburg
d University of Jyväskylä
e V. A. Fock Institute of Physics, Saint-Petersburg State University
f Åbo Akademi University

Abstract: We evaluate finite-temperature equilibrium correlators корреляторы $\langle T_\tau \hat{\psi}({\bold r}_1) \hat{\psi}^\dagger({\bold r}_2)\rangle$ for thermal time $\tau$ ordered Bose fields полей $\hat{\psi}$, $\hat{\psi}^\dagger$ to good approximations by new methods of functional integration in $d=1,2,3$ dimensions and with the trap potentials $V({\bold r})\not\equiv0$. As in the translationally invariant cases, asymptotic behaviors fall as $R^{-1}\equiv|{\bold r}_1-{\bold r}_2|^{-1}$ to longer-range condensate values for and only for $d=3$ in agreement with experimental observations; but there are generally significant corrections also depending on ${\bold S}\equiv({\bold r}_1+{\bold r}_2)/2$ due to the presence of the traps. For $d=1$, we regain the exact translationally invariant results as the trap frequencies $\Omega\rightarrow0$. In analyzing the attractive cases, we investigate the time-dependent $c$-number Gross–Pitaevskii (GP) equation with the trap potential for a generalized nonlinearity $-2c\psi|\psi|^{2n}$ and $c<0$. For $n=1$, the stationary form of the GP equation appears in the steepest-descent approximation of the functional integrals. We show that collapse in the sense of Zakharov can occur for $c<0$ and $nd\geq2$ and a functional $E_{NLS}[\psi]\leq0$ even when $V({\bold r})\not\equiv0$. The singularities typically arise as $\delta$-functions centered on the trap origin ${\bold r}={\bold 0}$.

Keywords: Bose–Einstein condensation, functional integral method, quantum model of nonlinear Schrödinger equation, finite-temperature theory, magnetic traps, two-point correlations, coherence functions

DOI: https://doi.org/10.4213/tmf140

Full text: PDF file (336 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2003, 134:1, 47–61

Bibliographic databases:


Citation: R. K. Bullough, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, I. Timonen, A. V. Rybin, G. G. Varzugin, M. Lindberg, “Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$”, TMF, 134:1 (2003), 55–73; Theoret. and Math. Phys., 134:1 (2003), 47–61

Citation in format AMSBIB
\Bibitem{BulBogKap03}
\by R.~K.~Bullough, N.~M.~Bogolyubov, V.~S.~Kapitonov, K.~L.~Malyshev, I.~Timonen, A.~V.~Rybin, G.~G.~Varzugin, M.~Lindberg
\paper Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$
\jour TMF
\yr 2003
\vol 134
\issue 1
\pages 55--73
\mathnet{http://mi.mathnet.ru/tmf140}
\crossref{https://doi.org/10.4213/tmf140}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2021730}
\zmath{https://zbmath.org/?q=an:1078.81534}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 1
\pages 47--61
\crossref{https://doi.org/10.1023/A:1021815606105}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000181042100005}


Linking options:
  • http://mi.mathnet.ru/eng/tmf140
  • https://doi.org/10.4213/tmf140
  • http://mi.mathnet.ru/eng/tmf/v134/i1/p55

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bogoliubov NM, Malyshev C, Bullough RK, et al, “Finite-temperature correlations in the one-dimensional trapped and untrapped Bose gases”, Physical Review A, 69:2 (2004), 023619  crossref  mathscinet  adsnasa  isi  scopus  scopus
    2. N. M. Bogolyubov, K. L. Malyshev, “Functional integration and the twopoint correlation function of the one-dimensional Bose-gas in the harmonic potential”, St. Petersburg Math. J., 17:1 (2006), 63–84  mathnet  crossref  mathscinet  zmath
    3. Xia X, Silbey RJ, “Effective Lagrangian approach to the trapped Bose gases at low temperatures”, Physical Review A, 71:6 (2005), 063604  crossref  adsnasa  isi  scopus  scopus
    4. Bullough R, “Goat cheese for breakfast in Istanbul or Why are certain nonlinear PDEs both widely applicable and integrable? Reminiscences of Francesco Calogero”, Journal of Nonlinear Mathematical Physics, 12 (2005), 124–137, Suppl. 1  crossref  mathscinet  adsnasa  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:351
    Full text:118
    References:43
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019