RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2003, Volume 134, Number 1, Pages 135–147 (Mi tmf146)  

Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation

V. M. Rotos

Loughborough University

Abstract: We establish the splitting of homoclinic orbits for a near-integrable lattice modified KdV (mKdV) equation with periodic boundary conditions. We use the Bäcklund transformation to construct homoclinic orbits of the lattice mKdV equation. We build the Melnikov function with the gradient of the invariant defined through the discrete Floquet discriminant evaluated at critical points. The criteria for the persistence of homoclinic solutions of the perturbed lattice mKdV equation are established.

Keywords: homoclinic solutions, lattice mKdV equation, Melnikov analysis

DOI: https://doi.org/10.4213/tmf146

Full text: PDF file (270 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2003, 134:1, 117–127

Bibliographic databases:


Citation: V. M. Rotos, “Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation”, TMF, 134:1 (2003), 135–147; Theoret. and Math. Phys., 134:1 (2003), 117–127

Citation in format AMSBIB
\Bibitem{Rot03}
\by V.~M.~Rotos
\paper Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation
\jour TMF
\yr 2003
\vol 134
\issue 1
\pages 135--147
\mathnet{http://mi.mathnet.ru/tmf146}
\crossref{https://doi.org/10.4213/tmf146}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2021736}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 1
\pages 117--127
\crossref{https://doi.org/10.1023/A:1021828008831}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000181042100011}


Linking options:
  • http://mi.mathnet.ru/eng/tmf146
  • https://doi.org/10.4213/tmf146
  • http://mi.mathnet.ru/eng/tmf/v134/i1/p135

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:167
    Full text:86
    References:15
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019