RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1993, Volume 95, Number 2, Pages 228–238 (Mi tmf1462)  

This article is cited in 8 scientific papers (total in 8 papers)

Flat connections and polybles

V. V. Fock, A. A. Roslyi


Abstract: The Poisson structure of the moduli space of flat connections on a two dimensional Riemann surface is described in terms of lattice gauge fields and Poisson–Lie groups.

Full text: PDF file (1330 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1993, 95:2, 526–534

Bibliographic databases:

Language:

Citation: V. V. Fock, A. A. Roslyi, “Flat connections and polybles”, TMF, 95:2 (1993), 228–238; Theoret. and Math. Phys., 95:2 (1993), 526–534

Citation in format AMSBIB
\Bibitem{FocRos93}
\by V.~V.~Fock, A.~A.~Roslyi
\paper Flat connections and polybles
\jour TMF
\yr 1993
\vol 95
\issue 2
\pages 228--238
\mathnet{http://mi.mathnet.ru/tmf1462}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1243250}
\zmath{https://zbmath.org/?q=an:0849.58030}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 95
\issue 2
\pages 526--534
\crossref{https://doi.org/10.1007/BF01017138}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993ML10100007}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1462
  • http://mi.mathnet.ru/eng/tmf/v95/i2/p228

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Fock, L. O. Chekhov, “Quantum Mapping Class Group, Pentagon Relation, and Geodesics”, Proc. Steklov Inst. Math., 226 (1999), 149–163  mathnet  mathscinet  zmath
    2. L. O. Chekhov, R. C. Penner, “Introduction to quantum Thurston theory”, Russian Math. Surveys, 58:6 (2003), 1141–1183  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Yu. A. Neretin, “Spectral data for a pair of matrices of order three and an action of the group $\mathrm{GL}(2,\mathbb Z)$”, Izv. Math., 75:5 (2011), 959–969  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Nekrasov N., Rosly A., Shatashvili S., “Darboux coordinates, Yang-Yang functional, and gauge theory”, Nuclear Phys B Proc Suppl, 216 (2011), 69–93  crossref  isi
    5. Neretin Yu.A., “Double Cosets for SU(2) x ... x SU(2) and Outer Automorphisms of Free Groups”, Int Math Res Not, 2011, no. 9, 2047–2067  isi
    6. N. A. Nekrasov, A. A. Roslyi, S. L. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory”, Theoret. and Math. Phys., 181:1 (2014), 1206–1234  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    7. J. Math. Sci. (N. Y.), 213:5 (2016), 769–785  mathnet  crossref  mathscinet
    8. Victor Mouquin, “The Fock–Rosly Poisson Structure as Defined by a Quasi-Triangular $r$-Matrix”, SIGMA, 13 (2017), 063, 13 pp.  mathnet  crossref
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:273
    Full text:104
    References:29
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019