RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1993, Volume 95, Number 2, Pages 239–250 (Mi tmf1463)  

This article is cited in 1 scientific paper (total in 1 paper)

$d\le 1\cup d\ge 25$ and constrained KP hierarchy from BRST invariance in the $c\ne 3$ topological algebra

B. Gato-Rivera, A. M. Semikhatov


Abstract: The BRST invariance condition in a highest-weight representation of the topological ($\equiv$ twisted $N=2$) algebra captures the ‘invariant’ content of two-dimensional gravity coupled to matter.The topological algebra allows reductions to either the DDK-dressed matter or the ‘Kontsevich-Miwa’-dressed matter related to Virasoro-constrained KP hierarchy. The standard DDK formulation is recovered by splitting the topological generators into $c=-26$ reparametrization ghosts + matter + ‘Liouville’, while a similar splitting involving $c=-2$ ghosts gives rise to the matter dressed in exactly the way required in order that the theory be equivalent to Virasoro constraints on the KP hierarchy. The two dressings of matter with the ‘Liouville’ differ also by their ‘ghost numbers’, which is similar to the existence of representatives of BRST cohomologies with different ghost numbers. The topological central $c\ne 3$ provides a two-fold covering of the allowed region $d\le 1\cup d\ge 25$ of the matter central charge $d$ via $d+(c+1)(c+6)(c-3)$. The ‘Liouville’ field is identified as the ghost-free part of the topological $U(1)$ current. The construction thus allows one to establish a direct relation (presumably an equivalence) between the Virasoro-constrained KP hierarchies, minimal models, and the BRST invariance condition for highest-weight states of the topological algebra.

Full text: PDF file (1277 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1993, 95:2, 535–545

Bibliographic databases:


Citation: B. Gato-Rivera, A. M. Semikhatov, “$d\le 1\cup d\ge 25$ and constrained KP hierarchy from BRST invariance in the $c\ne 3$ topological algebra”, TMF, 95:2 (1993), 239–250; Theoret. and Math. Phys., 95:2 (1993), 535–545

Citation in format AMSBIB
\Bibitem{GatSem93}
\by B.~Gato-Rivera, A.~M.~Semikhatov
\paper $d\le 1\cup d\ge 25$ and constrained KP hierarchy from BRST invariance in the $c\ne 3$ topological algebra
\jour TMF
\yr 1993
\vol 95
\issue 2
\pages 239--250
\mathnet{http://mi.mathnet.ru/tmf1463}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1243251}
\zmath{https://zbmath.org/?q=an:0852.35124}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 95
\issue 2
\pages 535--545
\crossref{https://doi.org/10.1007/BF01017139}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993ML10100008}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1463
  • http://mi.mathnet.ru/eng/tmf/v95/i2/p239

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. M. Semikhatov, “Representations of infinite-dimensional algebras and conformal field theory: from $N=2$ to $\widehat{sl}(2\vert1)$”, Theoret. and Math. Phys., 112:2 (1997), 949–987  mathnet  crossref  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:210
    Full text:81
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019