RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1993, Volume 95, Number 2, Pages 280–292 (Mi tmf1467)  

This article is cited in 12 scientific papers (total in 12 papers)

Landau–Ginzburg topological theories in the framework of GKM and equivalent hierarchies

S. M. Kharchev, A. V. Marshakov, A. D. Mironov, A. Yu. Morozov


Abstract: We consider the deformations of “monomial solutions” to Generalized Kontsevich Model [1,2] and establish the relation between the flows generated by these deformations with those of $N=2$ Landau–Ginzburg topological theories. We prove that the partition function of a generic Generalized Kontsevich Model can be presented as a product of some “quasiclassical” factor and non-deformed partition function which depends only on the sum of Miwa transformed and flat times. This result is important for the restoration of explicit $p-q$ symmetry in the interpolation pattern between all the $(p,q)$-minimal string models with $c<1$ and for revealing its integrable structure in $p$-direction, determined by deformations of the potential. It also implies the way in which supersymmetric Landau–Ginzburg models are embedded into the general context of GKM. From the point of view of integrable theory these deformations present a particular case of what is called equivalent hierarchies.

Full text: PDF file (1322 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1993, 95:2, 571–582

Bibliographic databases:


Citation: S. M. Kharchev, A. V. Marshakov, A. D. Mironov, A. Yu. Morozov, “Landau–Ginzburg topological theories in the framework of GKM and equivalent hierarchies”, TMF, 95:2 (1993), 280–292; Theoret. and Math. Phys., 95:2 (1993), 571–582

Citation in format AMSBIB
\Bibitem{KhaMarMir93}
\by S.~M.~Kharchev, A.~V.~Marshakov, A.~D.~Mironov, A.~Yu.~Morozov
\paper Landau--Ginzburg topological theories in the framework of GKM and equivalent hierarchies
\jour TMF
\yr 1993
\vol 95
\issue 2
\pages 280--292
\mathnet{http://mi.mathnet.ru/tmf1467}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1243255}
\zmath{https://zbmath.org/?q=an:0847.53058}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 95
\issue 2
\pages 571--582
\crossref{https://doi.org/10.1007/BF01017143}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993ML10100012}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1467
  • http://mi.mathnet.ru/eng/tmf/v95/i2/p280

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Phys. Usp., 45:9 (2002), 915–954  mathnet  crossref  crossref  isi
    2. A. D. Mironov, “Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems”, Theoret. and Math. Phys., 135:3 (2003), 814–827  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Morozov A., “Challenges of matrix models”, String Theory: From Gauge Interactions to Cosmology, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 208, 2006, 129–162  isi
    4. Alexandrov, A, “BGWM as second constituent of complex matrix model”, Journal of High Energy Physics, 2009, no. 12, 053  crossref  isi
    5. Morozov, A, “Exact 2-point function in Hermitian matrix model”, Journal of High Energy Physics, 2009, no. 12, 003  crossref  zmath  isi
    6. Morozov, A, “ON EQUIVALENCE OF TWO HURWITZ MATRIX MODELS”, Modern Physics Letters A, 24:33 (2009), 2659  crossref  mathscinet  zmath  adsnasa  isi
    7. Alexandrov, A, “PARTITION FUNCTIONS OF MATRIX MODELS AS THE FIRST SPECIAL FUNCTIONS OF STRING THEORY II. KONTSEVICH MODEL”, International Journal of Modern Physics A, 24:27 (2009), 4939  crossref  mathscinet  zmath  adsnasa  isi
    8. Mironov A., Morozov A., “Virasoro constraints for Kontsevich-Hurwitz partition function”, Journal of High Energy Physics, 2009, no. 2, 024  crossref  mathscinet  isi
    9. A. Yu. Morozov, “Unitary integrals and related matrix models”, Theoret. and Math. Phys., 162:1 (2010), 1–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory”, Theoret. and Math. Phys., 166:1 (2011), 1–22  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    11. O. S. Kruglinskaya, “Correlation functions and spectral curves in models of minimal gravity”, Theoret. and Math. Phys., 174:1 (2013), 78–85  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. Alexandrov A. Mironov A. Morozov A. Natanzon S., “On KP-Integrable Hurwitz Functions”, J. High Energy Phys., 2014, no. 11, 080  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:353
    Full text:128
    References:56
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019