RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1993, Volume 95, Number 2, Pages 317–340 (Mi tmf1470)  

This article is cited in 14 scientific papers (total in 14 papers)

On the continuum limit of the conformal matrix models

A. D. Mironov, S. Z. Pakulyak


Abstract: The double scaling limit of a new class of the multi-matrix models proposed in [1], which possess the $W$-symmetry at the discrete level, is investigated in details. These models are demonstrated to fall into the same universality class as the standard multi-matrix models. In particular, the transformation of the $W$-algebra at the discrete level into the continuum one of the paper [2] is proposed, the corresponding partition functions being compared. All calculations are demonstrated in full in the first non-trivial case of $W^{(3)}$-constraints.

Full text: PDF file (2055 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1993, 95:2, 604–625

Bibliographic databases:

Language:

Citation: A. D. Mironov, S. Z. Pakulyak, “On the continuum limit of the conformal matrix models”, TMF, 95:2 (1993), 317–340; Theoret. and Math. Phys., 95:2 (1993), 604–625

Citation in format AMSBIB
\Bibitem{MirPak93}
\by A.~D.~Mironov, S.~Z.~Pakulyak
\paper On the continuum limit of the conformal matrix models
\jour TMF
\yr 1993
\vol 95
\issue 2
\pages 317--340
\mathnet{http://mi.mathnet.ru/tmf1470}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1243258}
\zmath{https://zbmath.org/?q=an:0852.35135}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 95
\issue 2
\pages 604--625
\crossref{https://doi.org/10.1007/BF01017146}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993ML10100015}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1470
  • http://mi.mathnet.ru/eng/tmf/v95/i2/p317

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alexandrov A, Morozov A, Mironov A, “Partition functions of matrix models: First special functions of string theory”, International Journal of Modern Physics A, 19:24 (2004), 4127–4163  crossref  mathscinet  zmath  adsnasa  isi
    2. A. S. Alexandrov, A. D. Mironov, A. Yu. Morozov, “Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model”, Theoret. and Math. Phys., 142:3 (2005), 349–411  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Morozov A., “Challenges of matrix models”, String Theory: From Gauge Interactions to Cosmology, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 208, 2006, 129–162  isi
    4. Alexandrov, A, “BGWM as second constituent of complex matrix model”, Journal of High Energy Physics, 2009, no. 12, 053  crossref  isi
    5. Alexandrov, A, “PARTITION FUNCTIONS OF MATRIX MODELS AS THE FIRST SPECIAL FUNCTIONS OF STRING THEORY II. KONTSEVICH MODEL”, International Journal of Modern Physics A, 24:27 (2009), 4939  crossref  mathscinet  zmath  adsnasa  isi
    6. Mironov A., Morozov A., “Virasoro constraints for Kontsevich-Hurwitz partition function”, Journal of High Energy Physics, 2009, no. 2, 024  crossref  mathscinet  isi
    7. Alexandrov A. Mironov A. Morozov A. Natanzon S., “On KP-Integrable Hurwitz Functions”, J. High Energy Phys., 2014, no. 11, 080  crossref  isi
    8. Awata H., Kanno H., Matsumoto T., Mironov A., Morozov A., Morozov A., Ohkubo Yu., Zenkevich Y., “Explicit examples of DIM constraints for network matrix models”, J. High Energy Phys., 2016, no. 7, 103  crossref  mathscinet  isi  elib  scopus
    9. Andrei Mironov, Alexei Morozov, “Check-Operators and Quantum Spectral Curves”, SIGMA, 13 (2017), 047, 17 pp.  mathnet  crossref
    10. Mironov A. Morozov A., “On Determinant Representation and Integrability of Nekrasov Functions”, Phys. Lett. B, 773 (2017), 34–46  crossref  isi
    11. Aminov G. Mironov A. Morozov A., “Modular Properties of 6D (Dell) Systems”, J. High Energy Phys., 2017, no. 11, 023  crossref  isi
    12. Mironov A., Morozov A., “Q-Painleve Equation From Virasoro Constraints”, Phys. Lett. B, 785 (2018), 207–210  crossref  zmath  isi  scopus
    13. Morozov A., “Cauchy Formula and the Character Ring”, Eur. Phys. J. C, 79:1 (2019), 76  crossref  isi  scopus
    14. Morozov A., “On W-Representations of Beta- and Q, T-Deformed Matrix Models”, Phys. Lett. B, 792 (2019), 205–213  crossref  mathscinet  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:175
    Full text:82
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019