RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1993, Volume 95, Number 2, Pages 361–384 (Mi tmf1473)  

This article is cited in 1 scientific paper (total in 1 paper)

Nonperturbative conditions for local Weyl invariance on a curved world sheet

J. Schnittger, U. Ellwanger


Abstract: We investigate Weyl anomalies on a curved world sheet to second order in a weak field expansion. Using a local version of the exact renormalization group equations, we obtain nonperturbative results for the tachyon/graviton/dilaton system. We discuss the elimination of redundant operators, which play a crucial role for the emergence of target space covariance. Performing the operator product expansion on a curved world sheet allows us to obtain the nonperturbative contributions to the dilaton $\beta$ function. We find the $\beta$ functions, after suitable field redefinitions, to be related to a target space effective action through a $\kappa$ function involving derivatives. Also we can establish a nonperturbative Curci–Paffuti relation including the tachyon $\beta$ function.

Full text: PDF file (2432 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1993, 95:2, 643–662

Bibliographic databases:

Language:

Citation: J. Schnittger, U. Ellwanger, “Nonperturbative conditions for local Weyl invariance on a curved world sheet”, TMF, 95:2 (1993), 361–384; Theoret. and Math. Phys., 95:2 (1993), 643–662

Citation in format AMSBIB
\Bibitem{SchEll93}
\by J.~Schnittger, U.~Ellwanger
\paper Nonperturbative conditions for local Weyl invariance on a~curved world sheet
\jour TMF
\yr 1993
\vol 95
\issue 2
\pages 361--384
\mathnet{http://mi.mathnet.ru/tmf1473}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1243261}
\zmath{https://zbmath.org/?q=an:0849.58080}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 95
\issue 2
\pages 643--662
\crossref{https://doi.org/10.1007/BF01017149}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993ML10100018}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1473
  • http://mi.mathnet.ru/eng/tmf/v95/i2/p361

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Zakharov, “Asymptotic solution of the multidimensional Burgers equation near a singularity”, Theoret. and Math. Phys., 196:1 (2018), 976–982  mathnet  crossref  crossref  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:165
    Full text:86
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019