RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2003, Volume 134, Number 2, Pages 164–184 (Mi tmf155)  

This article is cited in 7 scientific papers (total in 7 papers)

Topological Correlations in Trivial Knots: New Arguments in Favor of the Representation of a Crumpled Polymer Globule

O. A. Vasil'eva, S. K. Nechaevab

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Paris-Sud University 11

Abstract: We prove the representation of a fractal crumpled structure of a strongly collapsed unknotted polymer chain. In this representation, topological considerations result in the chain developing a densely packed system of folds, which are mutually segregated at all scales. We investigate topological correlations in randomly generated knots on rectangular lattices (strips) of fixed widths. We find the probability of the spontaneous formation of a trivial knot and the probability that each finite part of a trivial knot becomes a trivial knot itself after joining its ends in a natural way. The complexity of a knot is characterized by the highest degree of the Jones–Kauffman polynomial topological invariant. We show that the knot complexity is proportional to the strip length in the case of long strips. Simultaneously, the typical complexity of a “quasi-knot”, which is a part of a trivial knot, is substantially less. Our analysis shows that the latter complexity is proportional to the square root of the strip length. The results obtained clearly indicate that the topological state of any part of a trivial knot densely filling the lattice is also close to the trivial state.

Keywords: knots, polymers, topological invariants, Brownian bridge, non-Euclidean geometry

DOI: https://doi.org/10.4213/tmf155

Full text: PDF file (385 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2003, 134:2, 142–159

Bibliographic databases:

Received: 14.02.2002

Citation: O. A. Vasil'ev, S. K. Nechaev, “Topological Correlations in Trivial Knots: New Arguments in Favor of the Representation of a Crumpled Polymer Globule”, TMF, 134:2 (2003), 164–184; Theoret. and Math. Phys., 134:2 (2003), 142–159

Citation in format AMSBIB
\Bibitem{VasNec03}
\by O.~A.~Vasil'ev, S.~K.~Nechaev
\paper Topological Correlations in Trivial Knots: New Arguments in Favor of the Representation of a Crumpled Polymer Globule
\jour TMF
\yr 2003
\vol 134
\issue 2
\pages 164--184
\mathnet{http://mi.mathnet.ru/tmf155}
\crossref{https://doi.org/10.4213/tmf155}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2025792}
\elib{http://elibrary.ru/item.asp?id=13436545}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 2
\pages 142--159
\crossref{https://doi.org/10.1023/A:1022267802220}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000181522200001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf155
  • https://doi.org/10.4213/tmf155
  • http://mi.mathnet.ru/eng/tmf/v134/i2/p164

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vasil'ev AN, “A multicomponent fluid system in the critical region in the presence of spatial confinement”, High Temperature, 42:4 (2004), 652–655  mathnet  mathnet  crossref  isi  scopus  scopus
    2. Vasil'ev AN, “Peculiarities of critical light opalescence in a spatially limited multicomponent system”, Optics and Spectroscopy, 98:6 (2005), 884–888  crossref  adsnasa  isi  scopus  scopus
    3. Mansfield M.L., “Development of knotting during the collapse transition of polymers”, The Journal of Chemical Physics, 127:24 (2007), 244902  crossref  adsnasa  isi  scopus  scopus
    4. Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A., Stamatoyannopoulos J., Mirny L.A., Lander E.S., Dekker J., “Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome”, Science, 326:5950 (2009), 289–293  crossref  adsnasa  isi  elib  scopus  scopus
    5. Athanasopoulou L., Athanasopoulos S., Karamanos K., Almirantis Ya., “Scaling properties and fractality in the distribution of coding segments in eukaryotic genomes revealed through a block entropy approach”, Phys Rev E, 82:5, Part 1 (2010), 051917  crossref  adsnasa  isi  elib  scopus  scopus
    6. Klimopoulos A., Sellis D., Almirantis Ya., “Widespread Occurrence of Power-Law Distributions in Inter-Repeat Distances Shaped by Genome Dynamics”, Gene, 499:1 (2012), 88–98  crossref  isi  elib  scopus  scopus
    7. Athanasopoulou L., Sellis D., Almirantis Ya., “A Study of Fractality and Long-Range Order in the Distribution of Transposable Elements in Eukaryotic Genomes Using the Scaling Properties of Block Entropy and Box-Counting”, Entropy, 16:4 (2014), 1860–1882  crossref  adsnasa  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:355
    Full text:115
    References:67
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019