RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1994, Volume 99, Number 2, Pages 250–256 (Mi tmf1584)  

Non classical symmetries and the Singular Manifold Method: the Burgers equation

P. G. Estevez, P. R. Gordoa

University of Salamanca

Abstract: A generalization of the Direct Method of Clarcson and Kruskal for finding Similarity Reductions of a PDE is found and discussed. The generalization incorporates the Singular Manifold Method largely based upon the Painleve Property. The symmetries found in this way are shown to be those correspondent to the so called Non Classical Symmetries by Blumen–Cole and Olver–Rosenau. The procedure is applied to the Burgers equation.

Full text: PDF file (594 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1994, 99:2, 562–566

Bibliographic databases:

Language: English

Citation: P. G. Estevez, P. R. Gordoa, “Non classical symmetries and the Singular Manifold Method: the Burgers equation”, TMF, 99:2 (1994), 250–256; Theoret. and Math. Phys., 99:2 (1994), 562–566

Citation in format AMSBIB
\Bibitem{EstGor94}
\by P.~G.~Estevez, P.~R.~Gordoa
\paper Non classical symmetries and the Singular Manifold Method: the Burgers equation
\jour TMF
\yr 1994
\vol 99
\issue 2
\pages 250--256
\mathnet{http://mi.mathnet.ru/tmf1584}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1308786}
\zmath{https://zbmath.org/?q=an:0850.35096}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 2
\pages 562--566
\crossref{https://doi.org/10.1007/BF01016139}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994PV07100011}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1584
  • http://mi.mathnet.ru/eng/tmf/v99/i2/p250

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:154
    Full text:56
    References:32
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019