RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1994, Volume 99, Number 2, Pages 292–299 (Mi tmf1589)  

This article is cited in 9 scientific papers (total in 9 papers)

The generalized Zakharov–Shabat system and the soliton perturbations

V. S. Gerdjikov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences

Abstract: The nonlinear evolution equations and their inhomogeneous versions related through the inverse scattering method to the generalized Zakharov–Shabat system $L=i d/dx + q(x) -\lambda J$ are studied. Here we assume that the potential $q(x)=[J,Q(x)]$ takes values in the simple Lie algebra $\mathfrak {g}$ and that $J$ is a nonregular element of the Cartan subalgebra $\mathfrak {h}$. The corresponding systems of equations for the scattering data of $L$ are derived. These can be applied to the study of soliton perturbations of such equations as the matrix nonlinear Schrödinger equation, the matrix $n$–wave equations etc.

Full text: PDF file (887 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1994, 99:2, 593–598

Bibliographic databases:

Language: English

Citation: V. S. Gerdjikov, “The generalized Zakharov–Shabat system and the soliton perturbations”, TMF, 99:2 (1994), 292–299; Theoret. and Math. Phys., 99:2 (1994), 593–598

Citation in format AMSBIB
\Bibitem{Ger94}
\by V.~S.~Gerdjikov
\paper The generalized Zakharov--Shabat system and the soliton perturbations
\jour TMF
\yr 1994
\vol 99
\issue 2
\pages 292--299
\mathnet{http://mi.mathnet.ru/tmf1589}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1308791}
\zmath{https://zbmath.org/?q=an:0850.35108}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 2
\pages 593--598
\crossref{https://doi.org/10.1007/BF01016144}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994PV07100016}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1589
  • http://mi.mathnet.ru/eng/tmf/v99/i2/p292

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions”, Theoret. and Math. Phys., 144:2 (2005), 1147–1156  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Kostov N.A., Atanasov V.A., Gerdjikov V.S., Grahovski G.G., “On the soliton solutions of the spinor Bose–Einstein condensate”, 14th International School on Quantum Electronics: Laser Physics and Applications, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 6604, 2007, T6041–T6041  isi
    3. Grahovski, G, “Generalised Fourier Transform and Perturbations to Soliton Equations”, Discrete and Continuous Dynamical Systems-Series B, 12:3 (2009), 579  crossref  mathscinet  zmath  isi
    4. V. S. Gerdjikov, G. G. Grahovski, “Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory”, SIGMA, 6 (2010), 044, 29 pp.  mathnet  crossref  mathscinet
    5. Grecu D., Visinescu A., Fedele R., De Nicola S., “Periodic and Stationary Wave Solutions of Coupled NLS Equations”, Romanian J Phys, 55:5–6 (2010), 585–600  isi
    6. Gerdjikov V.S., Grahovski G.G., “Two Soliton Interactions of BD.I Multicomponent NLS Equations and Their Gauge Equivalent”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1301, 2010, 561–572  isi
    7. Vladimir S. Gerdjikov, Georgi G. Grahovski, Alexander V. Mikhailov, Tihomir I. Valchev, “Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces”, SIGMA, 7 (2011), 096, 48 pp.  mathnet  crossref  mathscinet
    8. Gerdjikov V.S., “On Soliton Interactions of Vector Nonlinear Schrodinger Equations”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1404, 2011  isi
    9. Grahovski G.G., “The Generalised Zakharov-Shabat System and the Gauge Group Action”, J. Math. Phys., 53:7 (2012), 073512  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:188
    Full text:84
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019